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Abstract

Chiral pertubation theory (ChPT) is regarded as an effective theory of quantum chromody-

namics (QCD) at low-energies. The main goal of presented thesis was to investigate the gauge

dependence of the one-loop generating functional for the mesons and virtual photons in the

framework of ChPT. The motivation for the study was that it may provide a better under-

standing of the low-energy effective theory of QCD in presence of electromagnetic interaction.

The divergent part of the aforementioned one-loop generating functional as well as the β-

functions of the electromagnetic low-energy constants in the two-flavor case were calculated in

an arbitrary covariant gauge. Comparison of the β-functions with the ones available in the

literature was made. The independence of various physical quantities on the renormalization

scale, as well as relations between two- and three-flavor β-functions was verified.



1 Introduction

Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian

consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as

well as the other symmetries of parity and charge conjugation. ChPT is a theory which allows

one to study the low-energy dynamics of QCD. As QCD becomes non-perturbative at low

energy, it is impossible to use perturbative methods to obtain sensible theoretical predictions.

In the low-energy regime of QCD, the degrees of freedom are no longer quarks and gluons,

but rather hadrons ( baryons and mesons ). This is a result of confinement. If one could ”solve”

the generating functional of QCD , (such that the degrees of freedom in the Lagrangian are

replaced by hadrons) then one could extract information about low-energy physics. To date

this has not been accomplished. A low-energy effective theory with hadrons as the fundamental

degrees of freedom is a possible solution. The Lagrangian of effective theory contains all terms

consistent with the symmetries of the underlying theory. In general there are an infinite number

of terms which meet this requirement. Therefore in order to make any physical predictions, one

assigns the theory a power counting scheme which organizes terms by a pre-specified degree of

importance which allows one to keep some terms and reject all others as higher-order corrections

which can be safely neglected. In addition, unknown coupling constants, also called low-energy

constants , are associated with terms in the Lagrangian that must be determined by fitting to

experimental data. In what follows we will only focus on mesonic sector of ChPT.

We have just mentioned the so-called strong sector of ChPT. However, that is not the whole

story, since there exist electrically charged mesons. Thus, it is necessary to take into account

electromagnetic corrections. The underlying theory, QCD+QED, depends on the strong cou-

pling constant g, the fine structure constant α ≈ 1/137 and the light quark masses. The

corresponding effective theory (ChPT with virtual photons) is based on expansion in powers of

the electromagnetic coupling e. In addition, for consistency, one should provide chiral counting

scheme, which ensures the renormalizability of the effective theory order by order.

In present thesis we consider the ChPT with virtual photons at one-loop level (next-to-

leading order). In the first part (Sec.2) we briefly review the symmetry properties of strong

interactions at low energies. Next, in the Sec.3 we show how to construct ChPT for mesons at

leading and next-to-leading orders. In the Sec.4 we describe the inclusion of virtual photons

in the ChPT framework up to one-loop. Then we consider the so-called one-loop generating

functional. This object contains divergences, coming from the loops, in which mesons and

photons run.These divergences can be absorbed by suitable renormalization of the low-energy

constants, presented in the next-to-leading order Lagrangian.

The main topic of the thesis is a calculation of the divergent part of one-loop generating

functional, as well as β-functions of the low-energy constants in arbitrary covariant gauge

a. To date such calculation is presented in the literature only for the Feynman gauge a=1.

Knowing of the explicit dependence on gauge parameter may provide a better understanding
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of the low-energy structure of the QCD+QED as well as it may be helpful for the extraction of

the so-called electromagnetic low-energy constants from the lattice QCD data. Note that the

one-loop generating functional is directly related to the differential operator D, determined in

Sec. 4.3. In case of a = 1, the operator D is of so-called ”minimal” type and one can apply

heat-kernel method to find the divergent part of generating functional. That is not the case for

an arbitrary gauge a 6= 1. Therefore, we use alternative approach, considered in details in the

Sec.4.4. Finally, we make a number of checks of obtained result.
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2 The strong interactions at low energies

2.1 The symmetries of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a theory that describes strong interactions between

quarks (matter fields) and gluons (gauge bosons)[1, 2, 3] making up hadrons (such as the

proton, neutron or pion). It is a gauge theory which means that QCD Lagrangian should be

invariant under a continuous group of local (gauge) transformations. The latter statement is

known as gauge principle and it has proven to be a successful method in elementary particle

physics to generate interactions between matter fields through the exchange of massless gauge

bosons. QCD underlying gauge group is color SU(3). Quarks are spin-1/2 fermions, with six

different flavors ( u,d,s,c,b,t) in addition to their three possible colors. Thus, each quark field

qf ( subscript f denotes quark flavor) has a form of a color triplet

qf =


qf,r

qf,g

qf,b


The SU(3) gauge invariant QCD Lagrangian has the following form

LQCD =
∑

f=u,d,s,
c,b,t

q̄f (iD/−mf )qf −
1

4
Gµν,a G

µν
a . (1)

where Gµν,a denotes gauge field strength tensor:

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c

Here Aµ,a is a gauge potential (gluon field); g coupling constant between quarks and gluons

and fabc are structure constants of SU(3). The covariant derivative Dµ of Eq.(1) contains eight

independent gauge fields Aµ,a and reads

Dµqf = ∂µqf − ig
8∑

a=1

λCa
2
Aµ,aqf ;

here λCa are Gell-Mann matrices, wich act in color space. The existence of one universal coupling

constant g means that interaction between quarks and gluons is independent of the quarks

flavors.Moreover, as SU(3) is a non-Abelian Lie group, the entire theory is non-linear, i.e., the

gluons interact with each other.

The values of light ( u,d,s ) and heavy (c,b,t ) flavors masses can be arranged on a typical
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hadronic scale Λhadr = 1GeV as follows
mu = 0.005 GeV

md = 0.009 GeV

ms = 0.175 GeV

� 1 GeV ≤


mc = (1.15− 1.35) GeV

mb = (4.0− 4.4) GeV

mt = 174 GeV

 , (2)

Note that there are presented so-called current-quark masses, which must not be confused with

the constituent quark masses of a nonrelativistic quark model which are of the order 0.35 GeV.

Above a typical hadronic mass scale of about 1 GeV, there is a large number of states,

both meson resonances and baryons. Only a very few (pseudoscalar) states, however, are

significantly lighter than Λhadr = 1GeV: in particular the pions (Mπ ≈ 140 MeV), but also

kaons (MK ≈ 495 MeV) and the eta (Mη ≈ 550 MeV).

The masses of the lightest meson and baryon containing a charmed quark (c quark), D+ = cd̄

and Λ+
c = udc, are (1869.4 ± 0.5) MeV and (2284.9 ± 0.6) MeV, respectively. The threshold

center-of-mass energy to produce a D+D− pair in e+e− collisions is approximately 3.74 GeV

> 1GeV. Since we are interested in a low-energy regime ( <1Gev ) one can neglect heavy

quarks contributions and consider the part of QCD Lagrangian, containing only light flavors.

In addition, as one can conclude from Eq.(2), light quark masses are much smaller than hadronic

scale. Therefore, as a good approximation to describe low-energy QCD one can consider QCD

Lagrangian in the so-called chiral limit mu,md,ms → 0:

L0
qcd =

∑
l=u,d,s

q̄liD/ ql −
1

4
Gµν,aG

µν
a . (3)

The Lagrangian L0
qcd in chiral limit, apart from gauge symmetry,Lorentz invariance and the

discrete symmetries P ,C,T , has additional symmetry, called chiral symmetry. To investigate

this symmetry, we decompose the quark fields into its chiral components according to

q =
1

2
(1− γ5)q +

1

2
(1 + γ5)q = PLq + PRq = qL + qR ;

here PR = P †R and PL = P †L are correspondingly right-handed (R) and left-handed (L) projec-

tion operators. They satisfy a completeness relation

PR + PL = 1,

are idempotent,

P 2
R = PR, P 2

L = PL,

and respect the orthogonality relations

PRPL = PLPR = 0.
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Using above relations, we can write QCD Lagrangian in the chiral limit:

L0
qcd =

∑
l=u,d,s

(q̄R,liD/ qR,l + q̄L,liD/ qL,l)−
1

4
Gµν,aG

µν
a . (4)

It is invariant under global chiral U(3)L × U(3)R transformations

qR 7→ URqR, qL 7→ ULqL,

where UL and UR are independent unitary 3× 3 matrices:

UR = exp

(
−i

8∑
a=1

ΘR
a

λa
2

)
e−iΘ

R

, UL = exp

(
−i

8∑
a=1

ΘL
a

λa
2

)
e−iΘ

L

;

here ΘR,L
a (a = 1, ..., 8) and ΘR,L are group parameters.

We can rewrite the symmetry group according to

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A (5)

The Noether’s theorem states that the consequence of global symmetry is the existence of

conserved currents. Let’s consider currents, associated with the global symmetry transforma-

tions, given by Eq.(5) (see [4] for details ).

• The U(1)V singlet vector current V µ = q̄γµq,also called the quark number or baryon

number, is conserved in the Standard Model.

• The U(1)A axial-vector singlet current Aµ = q̄γµγ5q is no more conserved due to quantum

effects, referred to as U(1)A anomaly.

• The SU(3)L × SU(3)R conserved chiral currents

V µ,a = q̄γµ
λa

2
q, Aµ,a = q̄γµγ5

λa

2
q, a = 1, . . . , 8

Therefore, we are left with the invariance of the Lagrangian L0
qcd under global SU(3)L×SU(3)R×

U(1)V transformations.

We can associate with any conserved current Jµ,a, ∂µJ
µ,a = 0 time-independent quantity,

called charge

Qa(t) =
∫
d3xJa0 (t, ~x)

In our case charge operators

Qa
V (t) =

∫
dx V 0,a(x), Qa

A(t) =
∫
dxA0,a(x), QV (t) =

∫
dx V 0(x)
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form the Lie algebra of SU(3)L × SU(3)R × U(1)V group [4]:

[Qa
V , Q

a
V ] = ifabcQ

c
V , [Qa

A, Q
a
A] = ifabcQ

c
V , [Qa

V , Q
a
A] = ifabcQ

c
A,

[Qa
V , QV ] = [Qa

A, QV ] = 0

In reality, u−, d−, and s−quark masses are finite and quark-mass term in the QCD La-

grangian mixes left- and right-handed fields:

LM = −q̄Mq = −(q̄RMqL + q̄LMqR). (6)

where

M =


mu 0 0

0 md 0

0 0 ms


is quark-mass matrix. The quark-mass term explicitly breaks chiral symmetry of the QCD

Lagrangian and corresponding currents are no more conserved. More precisely, the divergences

of the currents read [4]

∂µV
µ,a = iq̄[M,

λa
2

]q,

∂µA
µ,a = iq̄{λa

2
,M}γ5q,

∂µV
µ = 0,

∂µA
µ = 2iq̄Mγ5q +

3g2

32π2
εµνρσG

µν
a G

ρσ
a , ε0123 = 1, (7)

where the last term in the divergence of the singlet axial-vector current accounts for the already

mentioned axial anomaly. Note that the divergences of the eight axial-vector current of Eq.(7)

are proportional to pseudoscalar quadratic forms. Due to smallness of the light quarks masses

on a typical hadronic scale 1 GeV this divergences are expected to be a small and one can

interpret them as the origin of the PCAC relation (partially conserved axial-vector current)

[5, 6].

2.2 Spontaneous Symmetry Breaking in QCD

We saw in previous subsection that the light-flavor QCD Lagrangian is invariant under group

G = SU(3)L×SU(3)R×U(1)V . Now, we have to investigate whether chiral symmetry is realised

in Nature in the Wigner-Weyl mode, i.e. the symmetry is manifest in the spectrum in terms

of multiplets, or whether it is realised as a Goldstone mode, i.e the symmetry is hidden or

spontaneously broken. A continuous symmetry is said to be spontaneously broken or hidden,

if the ground state of the system is no longer invariant under the full symmetry group of the

Hamiltonian.

6



In the case of Wigner-Weyl mode the conserved axial charges Qa
A annihilating the vacuum,

Qa
A|0〉 = 0,

would lead to parity doubling in the hadron spectrum. However, no such degenerate multiplets

with opposite (negative) parity are observed experimentally. Phenomenologically, there are (ap-

proximate) SU(3)V multiplets. In addition,unbroken chiral symmetry would lead to a vanishing

difference of the vector–vector and axial–axial vacuum correlators, 〈0|V V |0〉 − 〈0|AA|0〉 = 0.

This difference can be measured in hadronic tau decays τ → ντ +nπ, leading to a non-vanishing

result [7].

If chiral symmetry is realised in the Goldstone mode, then as it was shown in Ref. [8], the

ground state is invariant only under subgroup of G H = SU(3)V ×U(1)V transformations, that

is the charges Qa
V and QV annihilate the ground state (vacuum):

Qa
V |0〉 = QV |0〉 = 0.

According to Coleman’s theorem [9], if the vacuum is invariant under SU(3)× U(1)V , then so

is the Hamiltonian (but not vice versa). This further implies that the physical states of the

spectrum of the QCD Hamiltonian H0
qcd can be organized according to irreducible representa-

tions of SU(3)V ×U(1)V . The index V indicates that the generators transform with a positive

sign under parity. The U(1)V symmetry results in baryon number conservation and leads to

a classification of hadrons into mesons (B = 0) and baryons (B = 1). Then, since the parity

doubling is not observed for the low-lying states, one assumes that the Qa
A do not annihilate

the ground state:

Qa
A|0〉 6= 0.

Thus, the SU(3)L × SU(3)R symmetry spontaneously breaks down to SU(3)V :

SU(3)L × SU(3)R
SSB−→ SU(3)V .

According to Goldstone’s theorem [10, 11], to each axial generator Qa
A, which does not

annihilate the ground state, corresponds a massless Goldstone boson field φa(x) with spin 0,

whose symmetry properties are closely connected to the generator in question. In particular,

the Goldstone bosons are pseudoscalars, which means that they transform under parity as

φa(t, ~x)
P7→ −φa(t,−~x) (8)

Also, they transform under the subgroup SU(3)V as an octet:

[Qa
V , φ

b(x)] = ifabcφ
c(x)
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Since there are eight broken axial generators of the chiral group, Qa
A, there should be eight pseu-

doscalar Goldstone states. The experiment shows that the full octet of pseudoscalar mesons

(lightest hadronic states) π±, π0, K±, K0, K̄0, and η, indeed carry the quantum numbers of

Goldstone bosons. However, if pseudoscalar mesons were effectively Goldstone bosons, they gen-

erated by the spontaneous breakdown would had been massless. That is not the case in ”real”

world because the quark masses explicitly break the symmetry, but since mu,d,s < Λχ ≈1GeV

the breaking is expected to be small enough and can be treated as small perturbation.Here the

breaking scale of chiral symmetry Λχ plays an important role in construction of the effective

theory of QCD at low energies. A motivation for such effective theory,called Chiral Pertur-

bation Theory (ChPT) is that at low energies perurbative approach in the QCD is no longer

applicable, since coupling constant g becomes too large at energies below 1GeV.

In addition, we would like to mention theoretical conditions for a spontaneous chiral sym-

metry breaking in QCD [4]. Firstly, a non-vanishing scalar quark condensate, which is the

quantity 〈0|q̄q|0〉 is a sufficient but not a necessary condition for a spontaneous chiral symme-

try breakdown in QCD:

〈0|q̄q|0〉 6= 0

Secondly, considering the nonzero matrix element of the axial-vector current between the vac-

uum and massless one particle states |φb〉, which because of Lorentz covariance can be written

as

〈0|Aaµ(0)|φb(p)〉 = ipµF0δ
ab,

one obtains that nonzero value of F0 (this constant will be introduced again later) is a necessary

and sufficient criterion for spontaneous chiral symmetry breaking.
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3 ChPT for mesons

3.1 Transition from QCD to ChPT

We mentioned that the interactions between quarks and gluons, ruled by QCD, are highly non-

perturbative at energies below the breaking scale of chiral symmetry Λχ ≈1GeV. This makes

very difficult any description of the low-energy hadronic world in terms of quark and gluons. On

the other hand it is experimental fact that the low-energy spectrum of the theory contains only

octet of light pseudoscalar mesons (π,K, η) and they interact weakly, both among themselves

and with nucleons. We can expect that in terms of observable at low energies hadronic degrees

of freedom it is possible to construct such an effective feld theory that makes possible to analyse

the low energy structure of QCD.

The theoretical basis, which determined successful application of such effective field theories

was formulated by Weinberg [12]. It boils down to the following statement (conjecture):

Quantum Field Theory has no content besides unitarity, analyticity, cluster decomposition, and

symmetries.

This means that in order to calculate the S-matrix for any theory below some scale, one uses the

most general effective Lagrangian consistent with these principles in terms of the appropriate

asymptotic states. We will follow this principle in the construction of an effective theory for

the strong interactions.

Chiral perturbation theory (ChPT) provides a systematic method for discussing the conse-

quences of the global flavor symmetries of QCD at low energies by means of an effective field

theory.At quite low energies, the corresponding Lagrangian is expressed in terms of the mem-

bers of octet of light pseudoscalar mesons (π+, π−, π0, η,K+, K−, K0 and K̄0). Such effective

field theory is called the ChPT for mesons. We note that it is also possible to construct the

ChPT for baryons (like protons and neutrons), but it is beyond the scope of this thesis.

In order to relate effective theory with underlying theory (QCD) let us consider generating

functional of QCD in the presence of external fields. In order to do this, we equip the QCD

Lagrangian with external fields (sources, [13], [14]) vµ(x), vµ(s)(x), aµ(x), s(x), p(x) coupled to

the currents V µ,a,V µ, Aµ,a (see sec.1.1), as well as scalar S = q̄q and pseudoscalar P = iq̄γ5q

densities:

L = L0
qcd + Lext = L0

qcd + q̄γµ(vµ +
1

3
vµ(s) + γ5a

µ)q − q̄(s− iγ5p)q. (9)

Note that external fields are color-neutral Hermitian matrices:

vµ =
8∑

a=1

λa
2
vµa , aµ =

8∑
a=1

λa
2
aµa , s =

8∑
a=0

λasa, p =
8∑

a=0

λapa.

Then the generating functional, wich is a vacuum-to-vacuum transition amplitude in the pres-
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ence of external fields, has the form:

exp[iZ(v, a, s, p)] = 〈0; out|0; in〉v,a,s,p = 〈0|T exp
[
i
∫
d4xLext(x)

]
|0〉

= 〈0|T exp
(
i
∫
d4xq̄(x){γµ[vµ(x) + γ5a

µ(x)]− s(x) + iγ5p(x)}q(x)
)
|0〉,

(10)

The quark mass matrix M =diag(mu,md,ms) is contaned in the scalar field s(x). The Green

functions formed with the current operators of massless QCD are obtained by expanding the

generating functional around vµ = vµ(s) = aµ = s = p = 0, whereas for the real world one has

to expand around vµ = vµ(s) = aµ = p = 0, s(x) = M . In the absence of anomalies, the Ward

identities which express the symmetry properties of the theory in terms of the Green functions

are equivalent to gauge invariance of the generating functional under local transformations of

external fields [15].

The QCD Lagrangian L is invariant under local SU(3)L× SU(3)R×U(1)V transformations

of the quark fields and external sources[4]:

qR 7→ exp

(
−iΘ(x)

3

)
VR(x)qR,

qL 7→ exp

(
−iΘ(x)

3

)
VL(x)qL,

rµ 7→ VRrµV
†
R + iVR∂µV

†
R,

lµ 7→ VLlµV
†
L + iVL∂µV

†
L ,

v(s)
µ 7→ v(s)

µ − ∂µΘ,

s+ ip 7→ VR(s+ ip)V †L ,

s− ip 7→ VL(s− ip)V †R, (11)

where VR(x) and VL(x) are independent space-time-dependent SU(3) matrices and rµ = vµ +

aµ, lµ = vµ − aµ.
Now, at the hadronic level generating functional is calculated with an effective Lagrangian

Leff but the with same external fields vµ, vµ(s), a
µ, p, s:

exp[iZ(v, a, s, p)] = 〈0; out|0; in〉v,a,s,p = 〈0|T exp
[
i
∫
d4xLeff (x)

]
|0〉 (12)

This formula provides a link between underlying (QCD) and effective theory (ChPT). While

the left-hand side represents the generating functional for the Green functions of the underlying

theory, the right-hand side only involves the effective Lagrangian.
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3.2 Construction of the effective Lagrangian for mesons

Since we are interested in processes were the momenta are small q � Λχ (the low energy

sector of the theory), we can expand the Green functions in powers of the external momenta.

This amounts to an expansion in derivatives of the external fields. However, the low energy

expansion is not a simple Taylor expansion since the Goldstone bosons generate poles at q2 = 0

(in the chiral limit) or q2 = M2
π(for finite quark masses, Mπ is the pion mass). The low

energy expansion involves two small parameters, the external momenta q and the quark masses

M .Then, one expands in powers of these with the ratio M/q2 fixed [14]. The low energy

expansion of generating functional Eq.(10) is now obtained from a perturbative expansion of

the ChPT Lagrangian:

Leff = L2 + L4 + ...,

where the subscript (n=2,4) denotes the low energy dimension or so-called chiral order (number

of derivatives and/or quark mass term). In other words, one can systematically approximate

the underlying generating functional ZQCD(v, a, s, p) by a sequence:

ZQCD(v, a, s, p) = Zeff (v, a, s, p)
(2) + Zeff (v, a, s, p)

(4) + ...,

where the generating functionals are obtained using the effective theory. Now, since the sym-

metry of effective theory, containing in the Ward identities is equivalent to gauge invariance of

the generating functional one need to promote the global symmetry of the effective Lagrangian

G = SU(3)L × SU(3) to a local one [15]. While the external fields transform according to

Eq.(11), the meson fields φa, which we associate with the Goldstone bosons, transform with a

nonlinear representation of G, spontaneously broken to H = SU(3)V . Following the formalism

developed in Ref. [16, 17] ( Callan, Coleman, Wess and Zumino or CCWZ formalism) and

applying it to QCD, the meson fields are collected in a unitary matrix field U(φ) transforming

as

U(φ) 7→ VRU(φ)V †L , VL(x) ∈ SU(3)L, VR(x) ∈ SU(3)R (13)

under local chiral rotations SU(3)L×SU(3)R. There are different parameterizations of U(φ) cor-

responding to different choices of coordinates for the chiral coset space SU(3)L×SU(3)R/SU(3)V .

For convenience one chooses the matrix U(x) ≡ U(φ(x)) to be the SU(3) matrix:

U(x) = exp

(
i
φ(x)

F0

)
,

where

φ(x) =
8∑

a=1

λaφa(x) ≡


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η

 . (14)
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The local nature of G requires the introduction of a covariant derivative

dµU = ∂µU − irµU + iUlµ,

dµU
G−→ VRdµUV

+
L

and of associated field strength tensors fLµν and fRµν corresponding to the external fiels rµ and

lµ,

fRµν ≡ ∂µrν − ∂νrµ − i[rµ, rν ],

fLµν ≡ ∂µlν − ∂νlµ − i[lµ, lν ].

Finally, we introduce the liner combination

χ = 2B0(s+ ip),

with the scalar and pseudoscalar external fields [14]; B0 is a constant which can be related

to the quark condensate. Introduced quantities together with their transformation properties

under the group (G), charge conjugation(C) and parity (P) (see Table 1, [4]) can be used for

construction of the locally chiral invariant effective Lagrangian :

Leff = L0 + L2 + L4 + ...,

where due to Lorentz invariance only terms in even powers of derivatives occur. Note that since

U is unitary UU † = I, L0 can noly be a constant. Therefore ChPT Lagrangian for mesons has

a form

Leff = L2 + L4 + L6 + ..., (15)

element G C P

U VRUV
†
L UT U †

dλ1 · · · dλnU VRdλ1 · · · dλnUV
†
L (dλ1 · · · dλnU)T (dλ1 · · · dλnU)†

χ VRχV
†
L χT χ†

dλ1 · · · dλnχ VRdλ1 · · · dλnχV
†
L (dλ1 · · · dλnχ)T (dλ1 · · · dλnχ)†

rµ VRrµV
†
R + iVR∂µV

†
R −lTµ lµ

lµ VLlµV
†
L + iVL∂µV

†
L −rTµ rµ

fRµν VRf
R
µνV

†
R −(fLµν)

T fµνL
fLµν VLf

L
µνV

†
L −(fRµν)

T fµνR

Table 1: Transformation properties of the building blocks under the group (G), charge conjugation (C),
and parity (P ). The expressions for adjoint matrices are obtained by taking the Hermitian conjugate
of each entry.

The L2 contains either two derivatives or one quark mass term. In other words L2,called
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leading-order Lagrangian, contains terms of the chiral order O(p2); L4 contains terms of chiral

order O(p4) etc. To construct each term in Leff building blocks should be counted as:

U = O(1), DµU = O(p), rµ, lµ = O(p), fRµν , f
L
µν = O(p2), χ = O(p2). (16)

The general scheme of construction of the Leff in terms of building blocks of Eq.(16) can

be outlined as follows [4]. Given objects A,B, . . ., all of which transform as A′ = VRAV
†
L ,

B′ = VRBV
†
L , . . . , one can form invariants by taking the trace of products of the type AB†:

Tr(AB†) 7→ Tr[VRAV
†
L(VRBV

†
L)†] = Tr(VRAV

†
LVLB

†V †R) = Tr(AB†V †RVR)

= Tr(AB†).

The generalization to more terms is straightforward; the product of invariant traces is invariant:

Tr(AB†CD†), Tr(AB†)Tr(CD†), · · · . (17)

3.3 The leading-order effective Lagrangian

One can apply this formalism to construct the most general, Lorentz,C,P and locally-invariant,

effective Lagrangian at lowest chiral O(p2) [4, 13, 14]:

L2 =
F 2

0

4
Tr[dµU(dµU)†] +

F 2
0

4
Tr[χU † + Uχ†] =

F 2
0

4
〈dµUdµU † + χU † + Uχ†〉, (18)

where it is assumed that 〈. . .〉 ≡ Tr[. . .] and dµU † ≡ (dµU)†. Here L2 contains two free

parameters, called low energy constants F0 and B0. Note that the L2 has the same for both

SU(3) and SU(2). In order to determine the constant F0 note that the Noether currents

V µ,a, Aµ,a from L2 are given by

V µ,a = −iF
2
0

4
Tr
(
λa[U, ∂

µU †]
)
, (19)

Aµ,a = −iF
2
0

4
Tr
(
λa{U, ∂µU †}

)
. (20)

Then to find the leading term one should expand Aµ,a in the meson fields,

Aµ,a = −iF
2
0

4
Tr

(
λa

{
1 + · · · ,−iλb∂

µφb
F0

+ · · ·
})

= −F0∂
µφa + · · ·

such that we can calculate the matrix element of the axial current between a one-boson state

and the vacuum,

〈0|Aµ,a(x)|φb(p)〉 = 〈0| − F0∂
µφa(x)|φb(p)〉

= ipµF0 exp(−ip · x)δab.
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Thus, the F0 can be identified with the pion (meson) decay constant(in the chiral limit), which

is measured in pion decay π+ → `+ν` , F0 = Fπ[1 + O(M)]. The constant B, which appears

in the field χ, is related to the explicit symmetry breaking. One can choose p = 0 and s = M

(χ = 2B0M) and expand the symmetry breaking part of L2 in powers of the meson fields

LSB2 =
1

2
F 2

0BTr[M(U + U †)] = (mu +md +ms)B[F 2
0 −

φ2

2
+

φ4

24F 2
0

+ · · ·], (21)

where the superscript SB refers to symmetry breaking. The first term in the right hand side of

Eq.(21) is related to the vacuum energy, while the second and the third are meson mass and

interaction terms, respectively.One can show that B0 is proportional to vacuum expectation

value of quark condensate:

〈0|q̄q|0〉 = −3F 2
0B0[1 +O(M)]. (22)

Furthermore the meson masses, calculated from Eq.(21), in the case of isospin symmetry (mu =

md = m) are given by

M2
π = 2mB0[1 +O(M)],

M2
K = (m+ms)B0[1 +O(M)],

M2
η =

2

3
(m+ 2ms)B0[1 +O(M)]. (23)

This results, in combination with Eq.(22) are referred to as the Gell-Mann, Oakes, and Renner

relations [20].Furthermore, the masses of Eq.(23) satusfy the Gell-Mann-Okubo relation

4M2
K = 4B0(m+ms) = 2B0(m+ 2ms) + 2B0m = 3M2

η +M2
π (24)

which is found to be fulfilled in nature to 7% accuracy. We see that quadratic masses of the

Goldstone bosons linearly depend on the quark condensate and the quark masses. The latter

result is supported by the analysis of the data on K+ → π+π−e+νe [18][19], which means that

the quark condensate really characterizes spontaneous chiral symmetry breaking in QCD.

One can now calculate tree diagrams using the effective Lagrangian L2 and derive all so

called current algebra predictions (low energy theorems). Moreover, current algebra is only the

first term in a systematic low energy expansion. Working out tree graphs using L2 can not be

sufficient because the tree diagrams are always real and thus unitarity is violated. One has to

include higher order corrections to deal with this problems. In order to do it in a consistent

fashion, one needs a counting scheme to be discussed next.

3.4 Chiral counting scheme

So far we have only considered chiral Lagrangian for meson at leading order, i.e O(p2). As

was already pointed out tree level contributions from L2 violates unitarity. Indeed, consider
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the pion-pion (ππ) scattering to leading order. The scattering amplitude in the isospin limit

mu = md can be decomposed as

M(πaπb → πcπd) = δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t) ,

where u, s, t are so-called Mandelstam variables and A(s, t, u) is invariant amplitude. One can

calculate A(s, t, u) from L2:

A(s, t, u) =
s−M2

π

F 2
,

a parameter-free prediction [21]. Note that A(s, t, u) is real. However, the unitarity requires

the partial waves tIl to obey

Im tI` =

√
1− 4M2

π

s

∣∣∣tI` ∣∣∣2 ;

here I denotes the isospin I = 0, 1, 2 and l is azimuthal quantum number l = 0, 1, 2, · · ·.The

correct imaginary parts are only generated perturbatively by loops. Then the question arises

whether it is possible to take into account loop correction in a consistent manner, such that

one could calculate given matrix element with defined accuracy, using effective Lagrangian. It

was shown in Ref. [12] that it is, indeed possible and corresponding rule, known as Weinberg’s

power counting scheme (or argument), have been formulated.

Consider an arbitrary loop diagram based on the general effective Lagrangian Leff =
∑
n Ln,

where n denotes the chiral power of the various terms. Then the amplitude A of a diagram

with L loops , I internal lines, and Vn vertices of order n behaves in term of powers of momenta

as

A ∝
∫

(d4p)L
1

(p2)I
∏
n

(pn)Vn . (25)

Then let A be of chiral dimension D = 4L − 2I +
∑
n nVn. Using the topological identity

L = I −∑n Vn + 1 to eliminate L we find

D =
∑
n

Vn(n− 2) + 2L+ 2 . (26)

Note since the chiral Lagrangian starts with L2, i.e. n ≥ 2, the right-hand-side of Eq.(26)

is a sum of non-negative terms. Consequently, for fixed D, there is only a finite number

of combination L, Vn that can contribute and. In other words, only finite number of terms

in the Leff are needed to work to a fixed order in p, and the chiral Lagrangian acts like

a renormaliazable field theory. Furthermore, each additional loop integration suppresses the

amplitude by two orders in the momentum expansion. To illustrate this scheme, consider

again ππ scattering. At O(p2), only tree level diagrams composed of vertices of L2 contribute

(Vn>2 = 0, L = 0) (see Fig.1(a), [22]). At O(p4), there are two possibilities: either one-loop

graphs composed only of lowest-order vertices (Vn>2 = 0, L = 1), or tree graphs with exactly

one insertion from L4 (V4 = 1, Vn>4 = 0, L = 0) (Fig.1 (b)). Finally, at O(p6), Eq.(26) allows
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Figure 1: Feynman graphs contributing to ππ scattering at (a) O(p2), (b) O(p4), (c) O(p6).
The square denotes vertices from L4, the circle a vertex from L6.

for four different types of graphs: two-loop graphs with L2 vertices (Vn>2 = 0, L = 2); one-loop

graphs with one vertex from L4 (V4 = 1, Vn>4 = 0, L = 1); tree graphs with two insertions

from L4 (V4 = 2, Vn>4 = 0, L = 0); and tree graphs with one insertion from L6 (V4 = 0, V6 = 1,

Vd>6 = 0, L = 0),(Fig.1 (c)).

Calculating loop graphs, we might expect, that a given amplitude is proportional to some

power of the parameter p/Λχ, where 1/Λχ plays a role of expansion parameter of the effective

Lagrangian. There is an estimate of Λχ based on loop expansion [23]:

Λχ ∼ 4πF0 ≈ 1.2 GeV, (27)

as well as improved estimate [24, 25]:

Λχ ∼
4πF0√
Nf

,

whereNf is the number of light flavors (Nf=2, 3). The former estimate stems from the fact, that

the greater Nf is, the more number of mesons can run in loops. Therefore, one would expect

considerably better convergence of the chiral expansion in the SU(2)L × SU(2)R framework,

because in this case Nf = 2 and |p| = O(Mπ).

In addition, note that effective theory contains Goldstone bosons as the only dynamical

degrees of freedom. Therefore, it must fail once the energy reaches the resonance region, hence

for p2/Λ2
χ ≈ p2/M2

res ≈ 1. The lightest resonance, observed in ππ scattering in the I = l = 1

channel is a ρ resonance: Mres = Mρ = 770MeV. It is therefore appropriate to choose

Λχ ∼Mρ ≈ 770MeV, (28)

which is consistent with the estimate Eq.(27).

Now, based on general formalism, outlined in Sec.2.2 one can construct, in term of building
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blocks Eq.(16), the effective Lagrangian at higher orders. However, the number of indepen-

dent terms and corresponding low-energy constants increases rapidly at higher orders. Note

that in contrast to L2, which has the same form for both SU(2) and SU(3), the number of

terms at higher orders is different in both theories because, although both have the same most

general SU(N) Lagrangian, certain matrix-trace (Cayley-Hamilton) relations render some of

the structures redundant, such that the minimal numbers of independent terms differ.One can

summarize for chiral SU(Nf ), Nf = (2, 3) as follows [22]

O(p2): L2 contains (2, 2) constants (F0, B0),

O(p4): L4 contains (7, 10) constants [13, 14],

O(p6): L6 contains (53, 90) constants [26]

(discounting so-called contact terms that depend on external fields only).

For the two-flavor case the effective Lagrangian at next-to-leading order has the form

L4 = Lp4 =
l1
4
〈 dµU+dµU 〉2 +

l2
4
〈 dµU+dνU 〉 〈 dµU+dνU 〉

+
l3
16
〈χ+U + U+χ 〉2 +

l4
4
〈 dµU+dµχ+ dµχ+dµU 〉

+ l5 〈 fR
µνUf

LµνU+ 〉 +
il6
2
〈 fR

µνd
µUdνU+ + fL

µνd
µU+dνU 〉

− l7
16
〈χ+U − U+χ 〉2 +

1

4
(h1 + h3) 〈χ+χ 〉

+
1

2
(h1 − h3)Re(detχ) − h2 〈 fR

µνf
Rµν + fL

µνf
Lµν 〉 . (29)

and satisfies local chiral invariance, Lorentz invariance, P and C [13, 27, 28].The symbol 〈· · ·〉
denotes the trace in flavor space. The low-energy behavior of the Green functions at next-

to-leading order is determined by 7 low-energy coupling constants (chiral couplings) l1, · · · , l7.

The terms proportional to h1, h2, h3 do not contain the pseudoscalar fields and therefore not

directly measurable. Although, in principle, chiral couplings are calculable functions of ΛQCD

and the heavy quark masses, the main source of information about these couplings is low-energy

phenomenology.

As one can see, the Lagrangian L4 contains terms which are not presented in L2. This

is the general feature of effective field theories, which are non-renormalizable (i.e. an infinite

number of counterterms is required). However, order by order in the momentum expansion

they define a renormalizable theory. If we use a regularization which preserves the symmetries

of the Lagrangian , such ads dimensional regularization ,the counter-terms needed to renor-

malize the theory will be necessarily symmetric. Since the ChPT Lagrangian Leff is the most

general chiral invariant Lagrangian,i.e it contains all terms permitted by the symmetry, the

divergences can then be absorbed in a renormalization of the coupling constants occurring in

the Lagrangian[29].At one loop , the ChPT divergences are O(p4) and can be eliminated by an

appropriate renormalization of the low-energy constants li and hi.
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4 Virtual photons in ChPT for mesons

4.1 Effective Lagrangian at O(p2)

We have consider in previous section ChPT for mesons in the strong sector. However,since

there are electrically charged mesons (π+, π−, K+, see Eq.(14)) it is necessary to include elec-

tromagnetic interactions in ChPT framework to analyze the electromagnetic corrections to

meson masses, scattering amplitudes an so on. In a first step, the electromagnetic field is made

dynamical by including the appropriate kinetic term and by enlarging the external vector field

in the generating functional

vµ → vµ −QAµ, (30)

where Aµ is photon field and Q is a quark charge matrix, which is given in a two-flavor case by

Q =
e

3

 2 0

0 −1



〈Q〉2 =
1

5
〈Q2〉

Such an inclusion of electromagnetism via minimal substitution does not generate the most

general effects due to virtual photons.

Let us consider the part of the QCD Lagrangian coupling quarks to photons, decomposed

into chiral components

Lem = −q̄QAµγµq = −q̄RQAµγµqR − q̄LQAµγµqL,

If we introduce the so called spurion fields QR(x), QL(x) and rewrite Lem as follows

Lem = −q̄RQRAµγ
µqR − q̄LQLAµγ

µqL,

then Lem will be locally chiral invariant, if the spurions transform under SU(2)L × SU(2)R as

QI → gI QI g
†
I , gI ∈ SU(2)I , I = L,R . (31)

In the presence of electromagnetism a consistent expansion scheme is obtain if the electric

charge e is of chiral order O(p) [31]

e, QR, QL = O(p), Aµ = O(1).

Using the spurions QR(x), QL(x) as additional building blocks and the counting rule for

them, one can construct the most general Lagrangian, which includes electromagnetic interac-

tions and which is consistent with the chiral symmetry, P and C invariance. One then sets the
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spurion fields to the constant charge matrix Q:

QR(x) = QL(x) = Q

At leading order for an arbitrary number of light quark flavors the effective Lagrangian has a

form [30, 31]

L(Q)
2 =

F 2
0

4
〈 dµU+dµU + χ+U + U+χ 〉

−1

4
F µνFµν −

1

2a
(∂µAµ)2 + C 〈QRUQLU

+ 〉 . (32)

where Fµν = ∂µAν − ∂νAµ denotes the the photon field strength tensor, a the gauge fixing

parameter, dµ the generalized covariant derivative,

dµU = ∂µU − i(vµ +QRAµ + aµ)U + iU(vµ +QLAµ − aµ) (33)

The term in L(Q)
2 , proportional to coupling constant C gives an electromagnetic contribution

to the masses of the charged mesons:

(
M2

π+ −M2
π0

)
em

=
(
M2

K+ −M2
K0

)
em

=
2Ce2

F 2
0

. (34)

The equality of electromagnetic contributions to pion and kaon mass differences in the chiral

limit is known as Dashen’s theorem [32].

From L(Q)
2 one can derive equation of motion for matrix U

dµd
µŪ Ū+ − ŪdµdµŪ+ + Ūχ+ − χŪ+ − 1

2
〈Ūχ+ − χŪ+〉

+
4C

F 2
0

(
ŪQŪ+Q−QŪQŪ+

)
= 0, (35)

and for the photon field Aµ

[
gµν2−

(
1− 1

a

)
∂µ∂ν

]
Āν +

iF 2
0

2
〈dµŪ [Ū+, Q]〉 = 0. (36)

4.2 Effective Lagrangian at O(p4)

The Lagrangian L(Q)
2 generates one-loop graphs consisting of meson and photon lines. They

are of order O(p4) and contain divergences, which should be absorbed by adding tree graphs,

evaluated with the next-to-leading order Lagrangian L(Q)
4 . Consider loop expansion from point

of view of path integral formulation of quantum filed theory. The generating functional reads,
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up to and including terms of order O(p4)

eiZ[v,a,s,p] =
∫

[dU ][dAµ]e
i
∫
d4x

{
L(Q)
2 +L(Q)

4

}
, (37)

where [dAµ] means the path integral measure for electromagnetic field. One should calculate

Z[v, a, s, p] at one-loop level. To this purpose, we note that the classical field theory associated

with a given Lagrangian is equivalent to the set of tree graphs of the corresponding quantum

field theory. Thus if we use the classical field equations to evaluate Z[v, a, s, p], then Z[v, a, s, p]

generates Green functions at tree approximation (leading order) [33, 34].

Since the vertices of the Lagrangian L(Q)
4 only occur in tree graphs, the contribution from

L(Q)
4 to the generating functional can be calculated by evaluating the action

∫
dxL(Q)

4 at the

classical solution of the equations of motion. Therefore the most general Lagrangian at O(p4)

can be simplified with the help of the equations of motion.

The next-to-leading order Lagrangian in the presence of virtual photons was constructed in

Ref. [31]. It has a following form for two-flavor case[27, 35]:

L̄(Q)
4 = L̄p4 + F 2

0 {k1〈dµU+dµU〉〈Q2〉+ k2〈dµU+dµU〉〈QUQU+〉

+k3(〈dµU+QU〉〈dµU+QU〉+ 〈dµUQU+〉〈dµUQU+〉)

+k4〈dµU+QU〉〈dµUQU+〉+ k5〈χ+U + U+χ〉〈Q2〉

+k6〈χ+U + U+χ〉〈QUQU+〉

+k7〈(χU+ + Uχ+)Q+ (χ+U + U+χ)Q〉〈Q〉

+k8〈(χU+ − Uχ+)QUQU+ + (χ+U − U+χ)QU+QU〉

+k9〈dµU+[cµRQ,Q]U + dµU [cµLQ,Q]U+〉

+k10〈cµRQUcLµQU
+〉+ k11〈cµRQcRµQ+ cµLQcLµQ〉}

+F 2
0 {k12〈QUQU+〉2 + k13〈QUQU+〉〈Q2〉+ k14〈Q2〉2}, (38)

where it is assumed that U = Ū , Aµ = Āµ are classical solutions of equations of motion. The

covariant derivatives cµRQR, c
µ
LQL are defined as

cµIQI = ∂µQI − i[Iµ, QI ], I = R,L .

They transform under SU(2)R × SU(2)L in the same way as QR and QL

cµIQI → gI (cµIQI) g
†
I , gI ∈ SU(2)I , I = L,R . (39)

Since at later stage, one sets QR = QL = Q = const, then cIµQ = −i[Iµ, Q].
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4.3 One-loop generating functional

The generating functional of Eq. (37) becomes

eiZ[v,a,s,p] = ei
∫
d4xL̄(Q)

4

∫
[dU ][dAµ]ei

∫
d4xL(Q)

2

To evaluate the one-loop graphs produced by the Lagrangian L(Q)
2 , we expand the fields

U(x), Aµ(x) in the neighborhood of the classical solutions Ū , Āµ [36]:

U = ueiξ/F0u = u

(
1 + i

ξ

F0

− 1

2

ξ2

F 2
0

+ · · ·
)
u

= Ū +
i

F0

uξzu− 1

2F 2
0

uξ2u+ . . .

Aµ = Āµ + εµ, (40)

where Ū = u2 and ξ is a traceless hermitian matrix, ξ =
∑
a ξ

aτa, and τa denote the Pauli

matrices. Then we substitute this expansion in the action S =
∫
dxL(Q)

2 and keep only terms,

quadratic in the fluctuations ξ, εµ. As a result we obtain [31, 27]

S =
∫
dxL̄(Q)

2 − 1

2

∫
dxηAD

ABηB,

where the fluctuations are collected in a new flavor space elements ηA = (ξa, εµ) = z(ξ1, . . . , ξ3,

ε0, . . . , ε3) and matrix D is the differential operator defined as follows:

D = D0 + δ, (41)

D0 =

 ∂2δab 0

0 −∂2gσρ +
(
1− 1

a

)
∂σ∂ρ

 , (42)

δ(x) = {Yµ, ∂µ}+ YµY
µ + Λ, (43)

with

Yµ(x) =

 Γabµ Xaρ
µ

Xσb
µ 0

 , Λ(x) =

 σab −1
2
γaρ

−1
2
γσb −ρgσρ

 . (44)

The elements of these matrices are given by the expressions:

Γabµ = −1

2
〈[τa, τ b]Γµ〉,

Xaρ
µ = −Xρa

µ = Xaδρµ, Xa = −1

4
〈HLτ

a〉,

σab =
1

2
〈[∆µ, τ

a][∆µ, τ b]〉+
1

4
〈{τa, τ b}σ〉 − F 2

0

4
〈HLτ

a〉〈HLτ
b〉
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− C

8F 2
0

{
〈[HR +HL, τ

a][HR −HL, τ
b] + a↔ b〉

}
,

γaρ = γρa = F0〈
(

[HR,∆
ρ] +

1

2
DρHL

)
τa〉,

ρ =
3

8
F 2

0 〈H2
L〉, (45)

where

DµHL = ∂µHL + [Γµ, HL]

Γµ =
1

2
[u+, ∂µu]− 1

2
iu+R̄µu−

1

2
uL̄µu

+,

∆µ =
1

2
u+dµŪu

+ = −1

2
udµŪ

+u,

HR = u+QRu+ uQLu
+,

HL = u+QRu− uQLu
+,

σ =
1

2
(u+χu+ + uχ+u). (46)

The generating functional thus takes the form

eiZ[v,a,s,p] = e
i
∫
dx

{
L̄(Q)
2 +L̄(Q)

4

} ∫
[dξa][dεµ]e−

i
2

∫
dxηAD

ABηB .

The remaining path integral over fluctuations reduces to a Gaussian integral and we finally

obtain Z[v, a, s, p] at order O(p4):

Z[v, a, s, p] =
∫
dxL̄(Q)

2 +
∫
dxL̄(Q)

4 +
i

2
ln detD, (47)

where all quantities are to be evaluated at the classical solutions Ū(x), Āµ(x). The determinant

of the operator D requires renormalization, since it contains divergences of one-loop graphs

with arbitrary number of external legs. These divergences may be absorbed by an appropriate

renormalization of the low-energy coupling constants in the Lagrangian L̄(Q)
4 of Eq. (29):

li = lri (µ) + γiλ,

hi = hri (µ) + δiλ,

ki = kri (µ) + σiλ, (48)

where λ is defined as

λ =
µd−4

16π2

{
1

d− 4
− 1

2
[ln(4π) + Γ′(1) + 1]

}
with d denoting the number of space-time dimensions. The renormalized constants lri (µ),hri (µ),

kri (µ) are finite and depend on the scale µ introduced by dimensional regularization. The

coefficients γi, δi, σi are some numbers, which has to be chosen in such a way, that the generating
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functional (47) is finite. The resulting Z[v, a, s, p] generates the general solution of the Ward

identities at next-to-leading order.

We see that in order to determine the coefficients γi, δi, σi we need to regularize the deter-

minant of the operator D. Thus, we have to separate out the divergent part of the one-loop

generating functional

Zone loop =
i

2
ln detD.

There exists the so-called heat kernel method [37], which allows to calculate the divergent part

of the ln detD. However, this method can be applied (at least, without modifications) only to

the differential operators of so-called minimal kind. The operator D is nonminimal in general.

It becomes minimal when the gauge parameter is set to 1: a = 1 (Feynman gauge). This is the

case considered in Ref. [31]. Using the heat kernel method for the operator D, one obtains the

divergent part of the one-loop functional [13, 31]:

Za=1
one loop = − 1

16π2

1

d− 4

∫
d4x Sp

(
1

12
YµνY

µν +
1

2
Λ2
)

+ finite parts, (49)

where Sp means the trace in the flavor space ηA and Yµν denotes the field strength tensor of

Yµ,

Yµν = ∂µYν − ∂νYµ + [Yµ, Yν ].

One then can find the coefficients γi, δi, σi. The coefficients γi, δi are specified in Ref. [13], and

σi in Ref. [27].
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4.4 β-functions in arbitrary gauge

Our goal from now on, as well as the main aim of the present thesis, is to find the σi in an

arbitrary covariant gauge a .

As we have already mentioned, the coefficients σi, or alternatively the β-functions, defined

from Eq. (48) as

βi = µ
dkri (µ)

dµ
= − 1

16π2
σi,

were calculated in Feynman gauge a = 1. In order to extend the evaluation of σi to the case of

the arbitrary covariant gauge , we chose another method of calculation of the divergent part of

the one-loop functional Zone loop [13, 38]. In the first step, we expand the determinant of D of

Eq. (41) in powers of the operator δ :

Zone loop =
i

2
ln det(D0 + δ) =

i

2
ln detD0 +

i

2
Tr(D−1

0 δ)

− i
4

Tr(D−1
0 δD−1

0 δ) +
i

6
Tr(D−1

0 δD−1
0 δD−1

0 δ)

− i
8

Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) + finite parts, (50)

where trace Tr denotes, in coordinate space, the integral Tr{. . .} =
∫

dx〈x|Sp{. . .}|x〉. We

have written out only terms, which contain the ultraviolet divergences. In momentum space

at large momenta the matrix element of the operator D0 is proportional to 1/k2, while the

matrix element of the operator δ is proportional to k. Each trace in the sum at large momenta

is proportional to the integral
∫
d4k 1

kn
, which is divergent only for n ≤ 4. Therefore, divergent

are only traces presented in Eq. (50). We checked that in case of the minimal operator D, the

expansion (50) leads to the same divergent part of Eq. (49), obtained by the heat kernel method

(this was done in the strong sector, without virtual photons). Below we will use dimensional

regularization as a convenient one.

To perform the calculations in the arbitrary gauge we at first explicitly expand the traces

in the flavor space ηA. For the first trace we have:

Sp{D−1
0 δ} = (D−1

0 δ)AA = (D−1
0 )ab(δ)

ba + (D−1
0 )σρ(δ)

ρσ,

where we used the fact that (D−1
0 )aρ = (D−1

0 )σb = 0. Inserting necessary number of completeness

relation in coordinate space
∫
dx|x〉〈x| = 1, we obtain

Tr(D−1
0 δ) =

∫
dxdy

{
〈x|(D−1

0 )ab|y〉〈y|(δ)ba|x〉+ 〈x|(D−1
0 )σρ|y〉〈y|(δ)ρσ|x〉

}
.

The matrix elements of the operators D−1
0 and δ have the following form:

〈x|(D−1
0 )ab|y〉 = δab∆(x− y),
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〈x|(D−1
0 )µν |y〉 = −gµν∆(x− y) + ∆µν(x− y),

〈y|(δ)AB|x〉 = 2Y AB
µ (y)∂µy δ(x− y) + cAB(y)δ(x− y), (51)

where

∆(x− y) =
∫ ddk

(2π)d
e−ik(x−y)

−k2
,

∆µν(x− y) = (a− 1)
∫ ddk

(2π)d
kµkν

k4
e−ik(x−y),

c(x) = (∂µY
µ) + YµY

µ + Λ. (52)

Using Eq. (51), we separate the divergent terms, that depend on the gauge parameter (through

∆µν(x)), and hereby obtain for Tr(D−1
0 δ):

Tr(D−1
0 δ) = Tr(D−1

0 δ)a=1 +
∫
dxdy∆σρ(x− y)〈y|(δ)ρσ|x〉,

where Tr(D−1
0 δ)a=1 means the trace, which is calculated in Feynman gauge. We note, that since

Y σρ
µ (x) = 0, then the matrix element of the operator δ simplifies to

〈y|(δ)σρ|x〉 = cσρ(y)δ(x− y). (53)

This fact considerably reduces the number of divergent integrals, that one has to evaluate.

Substituting the expression (53), partially integrating over the coordinate y and then taking

integral over x, we get

Tr(D−1
0 δ) = Tr(D−1

0 δ)a=1 +
∫
dy∆σρ(0)cρσ(y).

The quantity ∆σρ(0), which is the integral in momentum space, is zero in dimensional regular-

ization,

∫ ddk

(2π)d(k2)m
= 0, for any m; ∆σρ(0) = (a− 1)

∫ ddk

(2π)d
kσkρ
k4
∼ gσρ

∫ ddk

(2π)d
1

k2
= 0.

Thus, Tr(D−1
0 δ) = Tr(D−1

0 δ)a=1. We perform the same steps for other traces in the expansion

(50). Details are provided in appendix B. The divergent part of the one-loop functional in the

arbitrary gauge is given by the expression

divZone loop = divZa=1
one loop +

1

4
F 2

0 (1− a)
1

16π2ε

∫
dx
{
〈[HL,∆µ]2〉 − 〈[HR,∆µ]2〉

+〈H2
Lσ〉 − 2〈[HR,∆µ]Gµ〉 − 3

4
〈GµG

µ〉 − 1

8
F 2

0Z〈[HR +HL, HR −HL]2〉
}
, (54)
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where div means divergent part, Z = C/F 4
0 and Gµ is defined as

Gµ = u+cµRQu− uc
µ
LQu

+.

Next, with help of Eq. (46), we simplify the result:

〈[HL,∆µ]2〉 − 〈[HR,∆µ]2〉 = −〈dµŪ+dµŪQŪ
+QŪ + dµŪdµŪ

+QŪQŪ+〉+ 2〈QdµŪQdµŪ+〉,

〈H2
Lσ〉 =

1

2
〈(χŪ+ + Ūχ+ + χ+Ū + Ū+χ)Q2〉

−1

2
〈(χŪ+ + Ūχ+)QŪQŪ+ + (χ+Ū + Ū+χ)QŪ+QŪ〉,

〈[HR,∆µ]Gµ〉 = −1

2
〈dµŪ+[cµRQ,Q]Ū + dµŪ [cµLQ,Q]Ū+〉

−1

2
〈dµŪ+cµRQŪQ+ dµŪQŪ

+cµRQ+ dµŪc
µ
LQŪ

+Q+ dµŪ
+QŪcµLQ〉,

〈GµG
µ〉 = 〈cµRQcRµQ+ cµLQcLµQ〉 − 2〈cµRQŪcLµQŪ+〉,

〈[HR +HL, HR −HL]2〉 = 32〈QŪQŪ+QŪQŪ+ −Q2ŪQ2Ū+〉. (55)

The second trace in the expression for 〈[HR,∆µ]Gµ〉 can be transformed, using partial integra-

tion and the equation of motion, obeyed by Ū [39]. We obtain

〈dµŪ+cµRQŪQ+ dµŪQŪ
+cµRQ+ dµŪc

µ
LQŪ

+Q+ dµŪ
+QŪcµLQ〉 =

〈dµŪ+dµŪQŪ
+QŪ + dµŪdµŪ

+QŪQŪ+〉 − 2〈QdµŪQdµŪ+〉

+
1

2
〈(χŪ+ − Ūχ+)QŪQŪ+ + (χ+Ū − Ū+χ)QŪ+QŪ〉

+4F 2
0Z〈QŪQŪ+QŪQŪ+ −Q2ŪQ2Ū+〉. (56)

Thus, the final result for divZone loop is

divZone loop = divZa=1
one loop −

1

16π2(d− 4)
(1− a)F 2

0

∫
dx
{

1

4
〈(χŪ+ + Ūχ+ + χ+Ū + Ū+χ)Q2〉

−1

4
〈(χŪ+ + Ūχ+)QŪQŪ+ + (χ+Ū + Ū+χ)QŪ+QŪ〉

+
1

4
〈(χŪ+ − Ūχ+)QŪQŪ+ + (χ+Ū − Ū+χ)QŪ+QŪ〉

+
1

2
〈dµŪ+[cµRQ,Q]Ū + dµŪ [cµLQ,Q]Ū+〉+

3

4
〈cµRQŪcLµQŪ+〉

−3

8
〈cµRQcRµQ+ cµLQcLµQ〉

}
. (57)

In case of two flavors the first term of the integrand in Eq.(57) can be transformed, using
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the following trace identity for 2× 2 matrices A, B and C :

〈ABC〉+ 〈BAC〉 − 〈A〉〈BC〉 − 〈B〉〈AC〉 − 〈C〉〈AB〉+ 〈A〉〈B〉〈C〉 = 0

〈(χŪ+ + Ūχ+ + χ+Ū + Ū+χ)Q2〉 = 〈χ+Ū + Ū+χ〉〈Q2〉+ 〈χ+Ū + Ū+χ〉〈QŪQŪ+〉

Finally, if we write the coefficients σi as

σi = σa=1
i + σai ,

where σa=1
i are ones calculated in Feynman gauge, then σai can be directly read off from Eq.

(57). They are presented in Table 2.

i σai σi

1 0 −27
20
− 1

5
Z

2 0 2Z

3 0 −3
4

4 0 2Z

5 1
4
(1− a) −1

5
Z − 1

4
a

6 −1
4
(1− a) 2Z + 1

4
a

7 0 0

8 1
4
(1− a) 3

8
− Z − 1

4
a

9 1
2
(1− a) 3

4
− 1

2
a

10 3
4
(1− a) 3

4
(1− a)

11 −3
8
(1− a) −3

8
(1− a)

12 0 3
2
− 12

5
Z + 84

25
Z2

13 0 −3− 3
5
Z − 12

5
Z2

14 0 3
2

+ 3Z + 12Z2

Table 2: The coefficients σi and their gauge dependent parts σai .
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4.5 Discussion of the result

Let us now discuss the validity of the result. Fist of all, gauge-dependence of the σ9 is an

agreement with that only one calculated in Ref.[40].

We checked,further, that the parts of the σai do not introduce the dependence of the physical

quantities on the renormalization scale µ, as it should. Namely, we considered the masses of

pions and ππ scattering amplitudes, calculated at one-loop level with virtual photons included

[27, 35]. The expressions for them contain certain combinations of coefficients kri (µ). Consider,

for example, one of such combinations, occurring in the expression for the mass of charged

pions:

Cπ± = −20

9
[ kr1 + kr2 − kr5 −

1

5
(23kr6 + k7 + 18kr8) ]

Acting by the operator µ d
dµ

on both sides, we get the β-functions, or equivalently the σi coef-

ficients, on the right-hand side. Using Table 2, we see that the quantity µ d
dµ
Cπ± still remains

equal to zero, as it should. Note that we cannot check the gauge invariance of physical quan-

tities, since the expressions for renormalized constants kri (µ) may contain parts, that do not

depend on µ, but may in general depend on the gauge parameter [41].

Finally, we checked that the scale-dependent part of the relations between two- and three-

flavor low-energy constants (LECs) [42] , kri (µ) and Kr
i (µ), are gauge-independent. Here few

comments are in order. The Authors in Ref. [42] provide the matching condition for aforemen-

tioned LECs in the Feynman gauge . The so-called two flavor limit of the three-flavor effective

theory is considered. More precisely, the external sources in the three-flavor generating func-

tional are restricted to the two-flavor subspace; strange quark mass is much larger than the

external momenta and the up and down quark masses ms � p,mu,md . In this limit the three

flavor functional reduces to the two flavor functional

Ztwo−flavorlimit = Ztwo−flavor

The both sides reproduce low-energy singularities associated to the propogation of massless

pions and photons and the corresponding non-local contributions should cancel. In other words,

pions and photons are not relevant for the matching of LECs (only the parts of generating

functional, corresponding to heavy particles η and K mesons, contribute) and therefore, the

relations between kri (µ) and Kr
i (µ) remain valid in case of arbitrary gauge parameter. Consider,

one of the relations [42]:

kr5 =
6

5
Kr

7 +
1

5
Kr

8 +
4

9
Kr

9 −
1

5
Kr

10 −
1

10
Z

1

32π2
(ln

M2
K

µ2
+ 1),

where MK is kaon mass and the coefficients Kr
i was calculated in arbitrary covariant gauge

by A.Agadjanov in his thesis. Acting in the same way as in the case of Cπ± , we see that this

relation does not depend on the gauge parameter.
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5 Conclusion

We investigated the gauge dependence of the one-loop generating functional for mesons and

virtual photons, as well as of β-functions of the electromagnetic low-energy constants . We

faced with the problem of nonapplicability of the conventional heat-kernel method. Therefore,

we made calculations,using alternative approach. Finally, we discussed the validity of the

obtained result. Namely, we made sure that our result agrees with one obtained by another

approach. Then, we showed that the β-functions do not introduce the dependence of the

physical quantities, such as the masses of pions and ππ scattering amplitude,on renormalization

scale. Finally, the scale-independence of relations between three- and two-flavour β-functions

was verified.

We plan to analyze how the scale-independent parts of the constants kri (µ) depend on

the gauge parameter. In addition, we want to study the problem in context of lattice QCD

calculation of the low-energy constants.
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Appendices

A Integrals

In this Appendix we collect the divergent parts of necessary integrals, that are needed during

the calculations with help of dimensional regularization. We note that d = 4− 2ε.

∫ ddp

(2π)d
pµpν

[p2 − 2kp+m2]3
=

1

2Γ(3)

i

16π2ε
gµν + f. p.,

∫ ddp

(2π)d
pµpνpλ

[p2 − 2kp+m2]3
=

1

2Γ(3)

i

16π2ε
[gµνkλ + gµλkν + gνλkµ] + f. p.,

∫ ddp

(2π)d
pµpνpλpρ

[p2 − 2kp+m2]3
=

1

2Γ(3)

i

16π2ε

{
1

2
[gµνkρkλ + gµλkρkν + gνλkµkρ + gµρkνkλ+

+gνρkµkλ + gλρkµkν ]− 1

4
(m2 − k2)[gµνgρλ + gµλgρν + gνλgµρ]

}
+ f. p.,

∫ ddp

(2π)d
pµpνpλpρ

[p2 − 2kp+m2]4
=

1

4Γ(4)

i

16π2ε
[gµνgρλ + gµλgρν + gνλgµρ] + f. p.,

∫ ddp

(2π)d
pµpνpλpρpσ

[p2 − 2kp+m2]4
=

1

4Γ(4)

i

16π2ε
[(gµνgσρ + gµρgσν + gνρgσµ)kλ

+(gµνgσλ + gµλgσν + gνλgµσ)kρ + (gµλgσρ + gµρgλσ + gλρgµσ)kν

+(gνλgρσ + gνρgσλ + gλρgσν)kµ + (gµνgρλ + gµλgρν + gνλgµρ)kσ] + f. p.,

∫ ddp

(2π)d
pµpνpλpρpσpε

[p2 − 2kp+m2]5
=

1

8Γ(5)

i

16π2ε
[(gµνgσρ + gµρgσν + gνρgσµ)gλε

+(gµνgσλ + gµλgσν + gνλgµσ)gρε + (gµλgσρ + gµρgλσ + gλρgµσ)gνε

+(gνλgρσ + gνρgσλ + gλρgσν)gµε + (gµνgρλ + gµλgρν + gνλgµρ)gσε] + f. p.,

∫ ddp

(2π)d
pµpνpλpρpσpεkαkβ

[p2 − 2kp+m2]6
=

1

16Γ(6)

i

16π2ε
[

(gµνgσρ + gµρgσν + gνρgσµ)(gαβgλε + gαλgβε + gαεgβλ)

+(gµνgσλ + gµλgσν + gνλgµσ)(gαβgρε + gαρgβε + gαεgβρ)

+(gµλgσρ + gµρgλσ + gλρgµσ)(gαβgνε + gανgβε + gαεgβν)

+(gνλgρσ + gνρgσλ + gλρgσν)(gαβgµε + gαµgβε + gαεgβµ)

+(gµνgρλ + gµλgρν + gνλgµρ)(gαβgσε + gασgβε + gαεgβσ)
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+(gασgβρ + gβσgαρ)(gµνgελ + gµεgνλ + gµλgνε)

+(gεσgαρ + gασgερ)(gµνgβλ + gµβgνλ + gµλgνβ)

+(gεσgβρ + gβσgερ)(gµνgαλ + gµαgνλ + gµλgνα)

+(gαλgβν + gβλgαν)(gµρgεσ + gµεgρσ + gµσgνε)

+(gελgαν + gαλgεν)(gµρgβσ + gµβgρσ + gµσgνβ)

+(gελgβν + gβλgεν)(gµρgασ + gµαgρσ + gµσgνα)

+(gαλgβµ + gβλgαµ)(gνρgεσ + gνσgρε) + (gελgαµ + gαλgεµ)(gνρgβσ + gνσgρβ)

+(gελgβµ + gβλgεµ)(gνρgασ + gνσgρα) + (gαµgβν + gβµgαν)(gλρgεσ + gλσgρε)

+(gεµgαν + gαµgεν)(gλρgβσ + gλσgρβ) + (gεµgβν + gβµgεν)(gλρgασ + gλσgρα)] + f. p.

B Calculation of traces

Below, we present the details of calculations.

B.1 Tr(D−10 δD−10 δ)

We expand the second trace:

Sp{D−1
0 δD−1

0 δ} = (D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

da + 2(D−1
0 )ab(δ)

bσ(D−1
0 )σρ(δ)

ρa

+(D−1
0 )σρ(δ)

ρµ(D−1
0 )µν(δ)

νσ (B.1)

Analogously, we separate the divergent terms, that depend on the gauge parameter (through

∆µν(x)), and hereby obtain for Tr(D−1
0 δD−1

0 δ):

Tr(D−1
0 δD−1

0 δ) = Tr(D−1
0 δD−1

0 δ)a=1

+2
∫
dxdydzdu∆(x− y)∆σρ(z − u)〈y|(δ)aσ|z〉〈u|(δ)ρa|x〉

−2gσρ

∫
dxdydzdu∆(x− y)∆µν(z − u)〈y|(δ)ρµ|z〉〈u|(δ)νσ|x〉

+
∫
dxdydzdu∆σρ(x− y)∆µν(z − u)〈y|(δ)ρµ|z〉〈u|(δ)νσ|x〉

= Tr(D−1
0 δD−1

0 δ)a=1 + 2I + 2K + L, (B.2)

Thus, it is necessary to find the divergent parts of the integrals I, K, L. The integral I is

I =
∫
dxdydzdu∆(x− y)∆σρ(z − u)[2Yµ(y)∂µy δ(y − z) + c(y)δ(y − z)]aσ ×

×[2Yν(u)∂νuδ(u− x) + c(u)δ(u− x)]ρa

=
∫
dydu [−2Yµ(y)∂µy∆(u− y) + b(y)∆(u− y)]aσ ×

×[−2Yν(u)∂νu∆σρ(y − u) + b(u)∆σρ(y − u)]ρa = I1 + I2 + I3 + I4, (B.3)
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where the following matrix is introduced:

b(x) = YµY
µ + Λ− (∂µY

µ). (B.4)

as well as notations for the integrals:

I1 = 4
∫
dydu Y aσ

µ (y)Y ρa
ν (u)Iµ1σρ,

I2 = −2
∫
dydu Y aσ

µ (y)bρa(u)Iµν2σρ,

I3 = −2
∫
dydu Y aσ

µ (y)bρa(u)Iµ3σρ,

I4 =
∫
dydu baσ(y)bρa(u)I4σρ, (B.5)

with

Iµνσρ1 = ∂µy∆(u− y)∂νu∆σρ(y − u),

Iµσρ2 = ∂µy∆(u− y)∆σρ(y − u),

Iµσρ3 = ∆(u− y)∂µu∆σρ(y − u),

Iσρ4 = ∆(u− y)∆σρ(y − u). (B.6)

The Lorentz indices are raised and lowered by the metric tensor gµν . With the help of Eq.(52)

we write the integrals (B.6) in momentum space. For the first integral we have

Iµνσρ1 = (a− 1)
∫ ddk1

(2π)d
ddk2

(2π)d
kν1k

σ
1k

ρ
1k

µ
2

k4
1k

2
2

e−i(k2−k1)(u−y).

Introducing new integration variables

(k1, k2) 7→ (k1, p) : p = k2 − k1,

with the transformation Jacobian J = 1 and Feynman parametrization, the integral Iµνσρ1 takes

the form

Iµνσρ1 = (a− 1)
∫ ddp

(2π)d
e−ip(u−y)F µνσρ

1 ,

where

F µνσρ
1 = 2!

∫ 1

0
dx
∫ x

0
dy
∫ ddk1

(2π)d
kν1k

σ
1k

ρ
1p

µ + kν1k
σ
1k

ρ
1k

µ
1

[k2
1 + 2(1− x)(k1p) + p2(1− x)]

3 .

Here and below we use the values of integrals, presented in appendix A; we obtain F µνσρ
1 :

F µνσρ
1 =

1

12

i

16π2ε

{
1

2
[−gνσpµpρ − gνρpµpσ − gσρpµpν + gµνpσpρ + gµσpνpρ + gµρpνpσ]

−1

4
[gµνgσρ + gµρgσν + gνρgσµ]

}
+ f. p. (B.7)
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Then, integrating over the momenta p with help of the formulas

∫ ddp

(2π)d
pµpνe−ip(u−y) = −∂µu∂νuδ(u− y),

∫ ddp

(2π)d
p2e−ip(u−y) = −∂2

uδ(u− y),

we get Iµνσρ1 and consequently I1, which reads

I1 = −2(a− 1)
i

16π2ε

∫
dxXa∂2Xa + f. p.,

where the result for I1 was simplified by summation over Lorentz indices and the use of property

of the matrix Yµ: Y aσ
µ = −Y σa

µ = Xaδσµ ; the quantity Xa is defined in Eq. (??). In the same

manner we calculate the divergent parts of the other integrals in Eq. (B.6). We obtain

I2 = −1

2
(a− 1)

i

16π2ε

∫
dxXa∂ρb

ρa + f. p.,

I3 = −(a− 1)
i

16π2ε

∫
dxXa∂σb

aσ + f. p.,

I4 = −1

4
(a− 1)

i

16π2ε

∫
dxgσρb

aσbρa + f. p. (B.8)

The values of integrals from appendix A as well as the following additional formula were used:

∫ ddp

(2π)d
pµe−ip(u−y) = i∂µuδ(u− y).

The final expression for the integral I = I1 + I2 + I3 + I4 can be reduced to a more simple one,

if we replace baσ by bσa. As it follows from the definition of the matrix b(x),

baσ = bσa − 2∂µY aσ
µ = bσa − 2∂σXa.

Therefore, we get

I = −(a− 1)
i

16π2ε

∫
dx
{
−2bρa∂ρX

a +
1

4
gσρb

σabρa
}

+ f. p.

The second integral K with help of the Eq. (53), takes the form

K = −gσρ
∫
dxdydzdu∆(x− y)∆µν(z − u)cρµ(y)cνσ(u)δ(y − z)δ(u− x)

= −gσρ
∫
dydu∆(u− y)∆µν(y − u)cρµ(y)cνσ(u). (B.9)

To calculate its divergent part we write

Kµν = Iµν4 = −2!(a−1)
∫ ddp

(2π)d
e−ip(u−y)

∫ 1

0
dx
∫ x

0
dy
∫ ddk1

(2π)d
kµ1k

ν
1

[k2
1 + 2(1− x)(k1p) + p2(1− x)]

3 ,
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Kµν = −1

4
(a− 1)

i

16π2ε
gµνδ(u− y) + f. p.

Then,

K =
1

4
(a− 1)

i

16π2ε

∫
dxgµνgσρc

ρµ(x)cνσ(x) + f. p.

The matrix element cρσ is

cρσ = −(ρ+XaXa)gρσ,

and thus we obtain

K = (a− 1)
i

16π2ε

∫
dx(ρ+XaXa)2 + f. p.

The last integral L can be written as

L =
∫
dydu cρµ(y)cνσ(u)Lσρµν ,

where

Lσρµν = ∆σρ(u− y)∆µν(y − u)

We have

Lσρµν = (a− 1)2
∫ ddp

(2π)d
e−ip(u−y)F σρµν ,

with

F σρµν =
∫ ddk1

(2π)d
kµ1k

ν
1(kσ1 + pσ)(kρ1 + pρ)

k4
1(k1 + p)4

= 3!
∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ ddk1

(2π)d
kµ1k

ν
1k

σ
1k

ρ
1

[k2
1 + 2(1− y)(k1p) + p2(1− y)]4

+ f. p. (B.10)

Taking the divergent part of the integral in momentum space we get Lσρµν :

Lσρµν =
1

24
(a− 1)2 i

16π2ε
[gµνgσρ + gµρgνσ + gµσgνρ]δ(u− y) + f. p.

The integral L becomes

L =
1

24
(a− 1)2 i

16π2ε

∫
dx(ρ+XaXa)2gµνgσρ[g

µνgσρ + gµρgνσ + gµσgνρ] + f. p.

L = (a− 1)2 i

16π2ε

∫
dx(ρ+XaXa)2 + f. p.

Thus, the divergent part of the second trace is

divTr(D−1
0 δD−1

0 δ) = divTr(D−1
0 δD−1

0 δ)a=1

−2(a− 1)
i

16π2ε

∫
dx
{
−2bρa∂ρX

a +
1

4
gσρb

σabρa
}

+
{

2(a− 1) + (a− 1)2
} i

16π2ε

∫
dx(ρ+XaXa)2, (B.11)
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where div means the divergent part.

B.2 Tr(D−10 δD−10 δD−10 δ)

Next we consider the third trace Tr(D−1
0 δD−1

0 δD−1
0 δ). We have:

Sp(D−1
0 δD−1

0 δD−1
0 δ) = (D−1

0 )ab(δ)
bc(D−1

0 )cd(δ)
de(D−1

0 )ef (δ)
fa

+3(D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

dσ(D−1
0 )σρ(δ)

ρa + (D−1
0 )σρ(δ)

ρλ(D−1
0 )λµ(δ)µa(D−1

0 )ab(δ)
bσ

+(D−1
0 )σρ(δ)

ρλ(D−1
0 )λµ(δ)µν(D−1

0 )νε(δ)
εσ (B.12)

We omit the last term, since it produces finite integral, due to Eq. (53). Then,

Tr(D−1
0 δD−1

0 δD−1
0 δ)− Tr(D−1

0 δD−1
0 δD−1

0 δ)a=1 = 3M + 3N + f. p.

= 3
∫
dxdydzdtdudv∆(x− y)∆(z − t)∆σρ(u− v)〈y|(δ)ab|z〉〈t|(δ)bσ|u〉〈v|(δ)ρa|x〉

+3
∫
dxdydzdtdudv {−∆(x− y)∆λµ(z − t)∆(u− v)gσρ −∆(x− y)σρ∆(z − t)∆(u− v)gλµ

+∆σρ(x− y)∆λµ(z − t)∆(u− v)}〈y|(δ)ρλ|z〉〈t|(δ)µa|u〉〈v|(δ)aσ|x〉+ f. p. (B.13)

The integral M is of the form

M =
∫
dydtdv [−2Yµ(y)∂µy∆(v − y) + b(y)∆(v − y)]ab ×

×[−2Yν(t)∂
ν
t ∆(y − t) + b(t)∆(y − t)]bσ[−2Yλ(v)∂λt ∆σρ(t− v) + b(v)∆σρ(t− v)]ρa

= M1 +M2 +M3 +M4 + f. p., (B.14)

where

M1 = −8
∫
dydtdv Y ab

µ (y)Y bσ
ν (t)Y ρa

λ (v)Mµνλ
1σρ ,

M2 = 4
∫
dydtdv Y ab

µ (y)Y bσ
ν (t)bρa(v)Mµν

2σρ,

M3 = 4
∫
dydtdv Y ab

µ (y)Y ρa
ν (v)bbσ(t)Mµν

3σρ,

M4 = 4
∫
dydtdv Y bσ

µ (t)Y ρa
ν (v)bab(y)Mµν

4σρ, (B.15)

with

Mµνλσρ
1 = ∂µy∆(v − y)∂νt ∆(y − t)∂λv∆σρ(t− v),

Mµνσρ
2 = ∂µy∆(v − y)∂νt ∆(y − t)∆σρ(t− v),

Mµνσρ
3 = ∂µy∆(v − y)∆(y − t)∂νv∆σρ(t− v),

Mµνσρ
4 = ∆(v − y)∂µt ∆(y − t)∂νv∆σρ(t− v). (B.16)
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To calculate the divergent part of Mµνλσρ
1 , we write

Mµνλσρ
1 = i3(a− 1)

∫ ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
kµ1k

ν
2k

λ
3k

σ
3k

ρ
3

k2
1k

2
2k

4
3

e−ik1(v−y)−ik2(y−t)−ik3(t−v) (B.17)

Then we similarly introduce the new integration variables:

(k1, k2, k3) 7→ (p, q, k) : p = k1 − k3, q = k2 − k3, k = k3,

with Jacobian J = 1, and obtain

Mµνλσρ
1 = i3(a− 1)

∫ ddp

(2π)d
ddq

(2π)d
eip(y−v)+iq(t−y)Gµνλσρ

1 ,

where

Gµνλσρ
1 = 3!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ ddk

(2π)d
pµkνkλkσkρ + qνkµkλkσkρ + kµkνkλkσkρ + f. p.

[k2 + 2k[p(x− y) + q(1− x)] + p2(x− y + q2(1− z))]4

After integrations, we obtain

Gµνλσρ
1 =

1

4

i

16π2ε

1

24
{(3pµ − qµ)(gνλgρσ + gνρgσλ + gλρgσν)

+(3qν − pν)(gµλgσρ + gµρgλσ + gλρgµσ)− (pλ + qλ)(gµνgσρ + gµρgσν + gνρgσµ)

−(pρ + qρ)(gµνgσλ + gµλgσν + gνλgµσ)− (pσ + qσ)(gµνgρλ + gµλgρν + gνλgµρ)}+ f. p.

Then, integrating over p, q according to the formulas

∫ ddp

(2π)d
pµeip(y−v) = −i∂µy δ(y − v),

∫ ddq

(2π)d
qνeiq(t−y) = i∂νy δ(t− y),

we get Mµνλσρ
1 . After summation over Lorentz indices and performing of the necessary integra-

tions, the divergent part of M1 reads

M1 = 2(a− 1)
i

16π2ε

∫
dxY ab

µ Xa∂µXb + f. p.

The integral Mµνσρ
2 is

Mµνσρ
2 = i2(a− 1)

∫ ddp

(2π)d
ddq

(2π)d
eip(y−v)+iq(t−y)Gµνσρ

2 ,

where

Gµνσρ
2 = 3!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ ddk

(2π)d
kµkνkσkρ

[k2 + . . .]4
+ f. p.
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Thus,

Mµνσρ
2 = − 1

24
(a− 1)

i

16π2ε
[gµνgσρ + gµρgνσ + gµσgνρ]δ(y − v)δ(t− y) + f. p.

We note that the other integrals Mµνσρ
3 ,Mµνσρ

4 have the same divergent part. Therefore, we

get

M2 +M3 +M4 = −1

6
(a− 1)

i

16π2ε

∫
dx
[
Y ab
µ Y bσ

ν bρa + Y ab
µ Y ρa

ν bbσ + Y bσ
µ Y ρa

ν bab
]
×

×[gµνgσρ + δµρ δ
ν
σ + δµσδ

ν
ρ ] + f. p., (B.18)

M2 +M3 +M4 = −1

6
(a− 1)

i

16π2ε

∫
dx
{

6Y ab
ρ Xb(bρa + baρ)− 24babXaXb

}
+ f. p.

The integral N , taking into account Eq. (53), can be written as

N = N1 +N2 +N3 + f. p.,

where

N1 = −4
∫
dydtdv gσρc

ρλ(y)Y µa
ν (t)Y aσ

ε (v)N νε
1λµ,

N2 = −4
∫
dydtdv gλµc

ρλ(y)Y µa
ν (t)Y aσ

ε (v)N νε
2σρ,

N3 = 4
∫
dydtdv cρλ(y)Y µa

ν (t)Y aσ
ε (v)N νε

3σρλµ, (B.19)

with

N νλµε
1 = ∆(v − y)∂νt ∆λµ(y − t)∂εv∆(t− v),

Nσρνε
2 = ∆σρ(v − y)∂νt ∆(y − t)∂εv∆(t− v),

Nσρνλµε
3 = ∆σρ(v − y)∂νt ∆λµ(y − t)∂εv∆(t− v). (B.20)

The integrals N νελµ
1 , Nσρνε

2 have the same divergent part as Mµνσρ
2 . Thus,

N νελµ
1 = − 1

24
(a− 1)

i

16π2ε
[gµνgλε + gνλgµε + gµλgνε]δ(y − v)δ(t− y) + f. p.,

Nσρνε
2 = − 1

24
(a− 1)

i

16π2ε
[gσρgνε + gνσgρε + gσεgρν ]δ(y − v)δ(t− y) + f. p. (B.21)

Substituting cρλY µa
ν Y aσ

ε = (ρ+XaXa)XbXbgρλδµν δ
σ
ε , we obtain

N1 +N2 = 8(a− 1)
i

16π2ε

∫
dx(ρ+XaXa)XbXb + f. p.
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The integral Nσρνλµε
3 is of the form

Nσρνλµε
3 = (a− 1)2)

ddp

(2π)d
ddq

(2π)d
eip(y−v)+iq(t−y)Gσρνλµε

3 ,

where

Gσρνλµε
3 = 4!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ z

0
du
∫ ddk

(2π)d
kσkρkλkµkνkε

[k2 + . . .]5
+ f. p.

Using the value of the integral in appendix A and then noting that

gρλgµνgσε[g
µνgσρgλε + perm.] = 192

we get N3, which reads

N3 = 4(a− 1)2 i

16π2ε

∫
dx(ρ+XaXa)XbXb + f. p.

Thus, the divergent part of Tr(D−1
0 δD−1

0 δD−1
0 δ) is

divTr(D−1
0 δD−1

0 δD−1
0 δ) = divTr(D−1

0 δD−1
0 δD−1

0 δ)a=1

+6(a− 1)
i

16π2ε

∫
dxY ab

µ Xa∂µXb

−1

2
(a− 1)

i

16π2ε

∫
dx
{

6Y ab
ρ Xb(bρa + baρ)− 24babXaXb

}
+
{

24(a− 1) + 12(a− 1)2
} i

16π2ε

∫
dx(ρ+XaXa)XbXb. (B.22)

B.3 Tr(D−10 δD−10 δD−10 δD−10 δ)

Finally, we calculate the divergent part of Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ). We have:

Sp(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) = (D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

de(D−1
0 )ef (δ)

fg(D−1
0 )gk(δ)

ka

+4(D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

de(D−1
0 )ef (δ)

fσ(D−1
0 )σρ(δ)

ρa

+2(D−1
0 )ab(δ)

bσ(D−1
0 )σρ(δ)

ρe(D−1
0 )ef (δ)

fλ(D−1
0 )λµ(δ)µa + f. p., (B.23)

where we omitted terms, that produce finite integrals. Then

Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)− Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)a=1 = 4P + 2Q+ f. p.

= 4
∫
dxdydzdtdudvdrds {∆(x− y)∆(z − t)∆(u− v)∆σρ(r − s)×

×〈y|(δ)ab|z〉〈t|(δ)bc|u〉〈v|(δ)cσ|r〉〈s|(δ)ρa|x〉}

+2
∫
dxdydzdtdudvdrds {−∆(x− y)∆(z − t)∆(u− v)∆λµ(r − s)gσρ

−∆(x− y)∆σρ(z − t)∆(u− v)∆(r − s)gλµ + ∆(x− y)∆σρ(z − t)∆(u− v)∆λµ(r − s)} ×

×〈y|(δ)aσ|z〉〈t|(δ)ρb|u〉〈v|(δ)bλ|r〉〈s|(δ)µa|x〉+ f. p. (B.24)
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The integral P is of the form

P = 16
∫
dydtdvds Y ab

µ (y)Y bc
ν (t)Y cσ

λ (v)Y ρa
ε (s)P µνλε

σρ + f. p.,

where

P µνλεσρ = ∂µy∆(s− y)∂νt ∆(y − t)∂λv∆(t− v)∂εs∆
σρ(v − s).

The integral P µνλεσρ can be written as

P µνλεσρ = −(a− 1)
∫ ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
ddk4

(2π)d
kµ1k

ν
2k

λ
3k

ε
4k

σ
4k

ρ
4

k2
1k

2
2k

2
3k

4
4

e−ik1(s−y)−ik2(y−t)−ik3(t−v)−ik4(v−s).

Introducing the new integration variables

(k1, k2, k3, k4) 7→ (p, k, q, r) : p = k1 − k2, q = k3 − k2, r = k4 − k3, k = k2,

with Jacobian J = 1, we get

P µνλεσρ = −(a− 1)
∫ ddp

(2π)d
ddq

(2π)d
ddr

(2π)d
eip(y−s)+iq(s−t)+ir(s−v)Hµνλεσρ

where

Hµνλεσρ = 4!
∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ z

0
du
∫ ddk

(2π)d
kσkρkλkµkνkε

[k2 + . . .]5
+ f. p.

The latter integral has the same divergent part as Gσρνλµε
3 . Thus,

Hµνλεσρ =
1

8Γ(5)

i

16π2ε

1

24
[gµνgσρgλε + perm.]δ(y − s)δ(s− t)δ(s− v) + f. p.

Substituting Y cσ
λ Y ρa

ε = −XaXcδσλδ
ρ
ε and noting that

gσλgρε[g
µνgσρgλε + perm.] = 48gµν ,

we obtain

P = 4(a− 1)
i

16π2ε

∫
dxgµνY ab

µ Y bc
ν X

aXc + f. p.

We write the second integral Q as

Q = Q1 +Q2 +Q3 + f. p.,

where

Q1 = −16
∫
dydtdvds gαβY

aα
σ (y)Y βb

ρ (t)Y bλ
ν (v)Y µa

ε (s)Qσρνε
1λµ + f. p.,
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Q2 = −16
∫
dydtdvds gαβY

aλ
σ (y)Y µb

ρ (t)Y bα
ν (v)Y βa

ε (s)Qσρνε
2λµ + f. p.,

Q3 = 16
∫
dydtdvds Y aσ

α (y)Y ρb
β (t)Y bλ

ν (v)Y µa
ε (s)Qαβνε

3σρλµ + f. p., (B.25)

with

Qσρνελµ
1 = ∂σy∆(s− y)∂ρt ∆(y − t)∂νv∆(t− v)∂εs∆

λµ(v − s),

Qσρλµνε
2 = ∂σy∆(s− y)∂ρt ∆λµ(y − t)∂νv∆(t− v)∂εs∆(v − s),

Qαβσρνελµ
3 = ∂αy ∆(s− y)∂βt ∆σρ(y − t)∂νv∆(t− v)∂εs∆

λµ(v − s). (B.26)

The integrals Qσρνελµ
1 , Qσρλµνε

2 have the same divergent part as Hµνλεσρ. Since

gσρgλνgµε[g
µνgσρgλε + perm.] = 192, gνεgλσgµρ[g

µνgσρgλε + perm.] = 192,

we obtain

Q1 +Q2 = 32(a− 1)
i

16π2ε

∫
dxXaXaXbXb + f. p.

The third integral Qαβσρνελµ
3 is

Qαβσρνελµ
3 = (a− 1)2

∫ ddp

(2π)d
ddq

(2π)d
ddr

(2π)d
eip(y−s)+iq(s−t)+ir(s−v)Hαβσρνελµ

3 ,

where

Hαβσρνελµ
3 = 5!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ z

0
du
∫ u

0
dv
∫ ddk

(2π)d
kαkβkσkρkνkεkλkµ

[k2 + . . .]6
+ f. p.

Performing necessary integrations, we get

Qαβσρνελµ
3 = (a− 1)2 1

16

i

16π2ε

1

120
[gαβgµνgσρgλε + perm.]δ(y − s)δ(s− t)δ(s− v) + f. p.

Then we substitute Y aσ
α Y ρb

β Y bλ
ν Y µa

ε = XaXaXbXbδσαδ
ρ
βδ

λ
ν δ

µ
ε . Since

gσαgρβgλνgµε[g
αβgµνgσρgλε + perm.] = 1920,

we obtain

Q3 = 16(a− 1)2 i

16π2ε

∫
dxXaXaXbXb + f. p.

Hereby, the divergent part of Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) reads

divTr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) = divTr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)a=1
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+16(a− 1)
i

16π2ε

∫
dxgµνY ab

µ Y bc
ν X

aXc

+
{

64(a− 1) + 32(a− 1)2
} i

16π2ε

∫
dxXaXaXbXb (B.27)

B.4 Summation over flavour indices

Thus, the divergent part of the one-loop functional in the arbitrary gauge is given by the

expression

divZone loop = divZa=1
one loop +

1

2
(1− a)

1

16π2ε

∫
dx
{
−2bρa∂ρX

a +
1

4
gσρb

σabρa

+2Y ab
µ Xa∂µXb − Y ab

ρ Xb(bρa + baρ) + 4babXaXb − 4gµνY ab
µ Y bc

ν X
aXc

}
(B.28)

+
{

2(a− 1) + (a− 1)2
} 1

16π2ε

∫
dx
{

1

4
(ρ+XaXa)2 − 2(ρ+XaXa)XbXb + 4XaXaXbXb

}

For simplification of the result, we have to sum over flavor indices. This is done with help of

the formula, which follows from the completeness relation for the generators λa of SU(N):

∑
a

〈Aλa〉〈Bλa〉 = 2〈AB〉 − 2

N
〈A〉〈B〉. (B.29)

We farther set QR = QL = Q. Since HL = 〈QR −QL〉 = 〈Q−Q〉 = 0,

XaXa =
F 2

0

16
〈HLλ

a〉〈HLλ
a〉 =

F 2
0

8
〈H2

L〉.

Then, ρ+XaXa = 1
2
F 2

0 〈H2
L〉 and the second integral in Eq. (B.28) is equal to zero:

1

4
(ρ+XaXa)2 − 2(ρ+XaXa)XbXb + 4XaXaXbXb =

(
1

16
− 1

8
+

1

16

)
F 2

0 〈H2
L〉 = 0.

From the definition of the matrix b it follows that

bρa = Xρc
µ Γµca + Λρa − ∂µXρa

µ , bρa + baρ = 2(Xρc
µ Γµca + Λρa),

bab = Γacµ Γµcb + 4XaXb + Λab − ∂µΓabµ . (B.30)

Then,

4babXaXb − 4gµνY ab
µ Y bc

ν X
aXc = 4XaXb

{
1

2
〈[∆µ, λ

a][∆µ, λb]〉+
1

4
〈{λa, λb}σ〉

− C

8F 2
0

(〈[HR +HL, λ
a][HR −HL, λ

b] + a↔ b〉)
}

(B.31)
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The matrix element bρa can be written as

bρa = −1

2
F0〈([HR,∆

ρ] +DρHL)λa〉,

since Xρb
µ Γµba = −1

4
F0〈λa[Γρ, HL]〉. Using Eq. (B.29), we obtain:

bρa∂ρX
a =

1

4
F 2

0 〈∂µHL([HR,∆
µ] +DµHL)〉,

gσρb
σabρa =

1

2
F 2

0 〈([HR,∆µ] +DµHL)([HR,∆
µ] +DµHL)〉,

Γabµ X
a∂µXb = −1

8
F 2

0 〈∂µHL[Γµ, HL]〉,

Γabρ X
bXcΓρca = −1

8
F 2

0 〈[Γµ, HL][Γµ, HL]〉,

Γabρ X
bΛρa =

1

4
F 2

0 〈[Γµ, HL]
(

[HR,∆
µ] +

1

2
DµHL

)
〉,

XaXb〈[∆µ, λ
a][∆µ, λb]〉 =

1

4
F 2

0 〈[HL,∆µ][HL,∆
µ]〉,

XaXb〈{λa, λb}σ〉 =
1

2
F 2

0 〈H2
Lσ〉,

XaXb(〈[HR +HL, λ
a][HR −HL, λ

b] + a↔ b〉) =
1

8
F 2

0 〈[HR +HL, HR −HL]2〉 (B.32)

We also note that DµHL can be written as

DµHL = [HR,∆µ] +Gµ,

where

Gµ = u+cµRQu− uc
µ
LQu.

After substitution of these formulas into Eq. (B.28), the divergent part of the one-loop func-

tional takes the form

divZone loop = divZa=1
one loop +

1

4
F 2

0 (1− a)
1

16π2ε

∫
dx
{
〈[HL,∆µ]2〉 − 〈[HR,∆µ]2〉

+〈H2
Lσ〉 − 2〈[HR,∆µ]Gµ〉 − 3

4
〈GµG

µ〉 − 1

8
F 2

0Z〈[HR +HL, HR −HL]2〉
}
, (B.33)

where Z = C/F 4
0 .
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