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Abstract

Chiral pertubation theory (ChPT) is regarded as an effective theory of quantum chromody-
namics (QCD) at low-energies. The main goal of presented thesis was to investigate the gauge
dependence of the one-loop generating functional for the mesons and virtual photons in the
framework of ChPT. The motivation for the study was that it may provide a better under-
standing of the low-energy effective theory of QCD in presence of electromagnetic interaction.
The divergent part of the aforementioned one-loop generating functional as well as the -
functions of the electromagnetic low-energy constants in the two-flavor case were calculated in
an arbitrary covariant gauge. Comparison of the [-functions with the ones available in the
literature was made. The independence of various physical quantities on the renormalization

scale, as well as relations between two- and three-flavor S-functions was verified.



1 Introduction

Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian
consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as
well as the other symmetries of parity and charge conjugation. ChPT is a theory which allows
one to study the low-energy dynamics of QCD. As QCD becomes non-perturbative at low
energy, it is impossible to use perturbative methods to obtain sensible theoretical predictions.

In the low-energy regime of QCD, the degrees of freedom are no longer quarks and gluons,
but rather hadrons ( baryons and mesons ). This is a result of confinement. If one could ”solve”
the generating functional of QCD , (such that the degrees of freedom in the Lagrangian are
replaced by hadrons) then one could extract information about low-energy physics. To date
this has not been accomplished. A low-energy effective theory with hadrons as the fundamental
degrees of freedom is a possible solution. The Lagrangian of effective theory contains all terms
consistent with the symmetries of the underlying theory. In general there are an infinite number
of terms which meet this requirement. Therefore in order to make any physical predictions, one
assigns the theory a power counting scheme which organizes terms by a pre-specified degree of
importance which allows one to keep some terms and reject all others as higher-order corrections
which can be safely neglected. In addition, unknown coupling constants, also called low-energy
constants , are associated with terms in the Lagrangian that must be determined by fitting to
experimental data. In what follows we will only focus on mesonic sector of ChPT.

We have just mentioned the so-called strong sector of ChPT. However, that is not the whole
story, since there exist electrically charged mesons. Thus, it is necessary to take into account
electromagnetic corrections. The underlying theory, QCD-+QED, depends on the strong cou-
pling constant g, the fine structure constant o ~ 1/137 and the light quark masses. The
corresponding effective theory (ChPT with virtual photons) is based on expansion in powers of
the electromagnetic coupling e. In addition, for consistency, one should provide chiral counting
scheme, which ensures the renormalizability of the effective theory order by order.

In present thesis we consider the ChPT with virtual photons at one-loop level (next-to-
leading order). In the first part (Sec.2) we briefly review the symmetry properties of strong
interactions at low energies. Next, in the Sec.3 we show how to construct ChPT for mesons at
leading and next-to-leading orders. In the Sec.4 we describe the inclusion of virtual photons
in the ChPT framework up to one-loop. Then we consider the so-called one-loop generating
functional. This object contains divergences, coming from the loops, in which mesons and
photons run.These divergences can be absorbed by suitable renormalization of the low-energy
constants, presented in the next-to-leading order Lagrangian.

The main topic of the thesis is a calculation of the divergent part of one-loop generating
functional, as well as [-functions of the low-energy constants in arbitrary covariant gauge
a. To date such calculation is presented in the literature only for the Feynman gauge a=1.

Knowing of the explicit dependence on gauge parameter may provide a better understanding



of the low-energy structure of the QCD+QED as well as it may be helpful for the extraction of
the so-called electromagnetic low-energy constants from the lattice QCD data. Note that the
one-loop generating functional is directly related to the differential operator D, determined in
Sec. 4.3. In case of a = 1, the operator D is of so-called "minimal” type and one can apply
heat-kernel method to find the divergent part of generating functional. That is not the case for
an arbitrary gauge a # 1. Therefore, we use alternative approach, considered in details in the

Sec.4.4. Finally, we make a number of checks of obtained result.



2 The strong interactions at low energies

2.1 The symmetries of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a theory that describes strong interactions between
quarks (matter fields) and gluons (gauge bosons)[l, 2, 3] making up hadrons (such as the
proton, neutron or pion). It is a gauge theory which means that QCD Lagrangian should be
invariant under a continuous group of local (gauge) transformations. The latter statement is
known as gauge principle and it has proven to be a successful method in elementary particle
physics to generate interactions between matter fields through the exchange of massless gauge
bosons. QCD underlying gauge group is color SU(3). Quarks are spin-1/2 fermions, with six
different flavors ( w,d,s,c,b,t) in addition to their three possible colors. Thus, each quark field

qr ( subscript f denotes quark flavor) has a form of a color triplet

qf,r
qy = qf.g
qfb

The SU(3) gauge invariant QCD Lagrangian has the following form

— . 1 174
Lqcp = Z qr(i) —my)qy — 1 Guva G- (1)

f:u,d,s,
c,b,t

where G, , denotes gauge field strength tensor:
G,uu,a = a/,LAl/,a - al/A,u,a + gfabcA,u,bAu,c

Here A, , is a gauge potential (gluon field); ¢ coupling constant between quarks and gluons
and fup. are structure constants of SU(3). The covariant derivative D,, of Eq.(1) contains eight

independent gauge fields A, , and reads

8 )\C
Dy = Ouay = i9 > - Apady:
a=1

here A\ are Gell-Mann matrices, wich act in color space. The existence of one universal coupling
constant ¢ means that interaction between quarks and gluons is independent of the quarks
flavors.Moreover, as SU(3) is a non-Abelian Lie group, the entire theory is non-linear, i.e., the
gluons interact with each other.

The values of light ( u,d,s ) and heavy (¢,b,t ) flavors masses can be arranged on a typical



hadronic scale Ayuq- = 1GeV as follows

m, = 0.005 GeV m. = (1.15 — 1.35) GeV
mg = 0.009GeV | < 1GeV < mp = (4.0 —4.4) GeV |, (2)
me = 0.175 GeV my = 174 GeV

Note that there are presented so-called current-quark masses, which must not be confused with
the constituent quark masses of a nonrelativistic quark model which are of the order 0.35 GeV.

Above a typical hadronic mass scale of about 1 GeV, there is a large number of states,
both meson resonances and baryons. Only a very few (pseudoscalar) states, however, are
significantly lighter than Ay.q. = 1GeV: in particular the pions (M, ~ 140 MeV), but also
kaons (M ~ 495 MeV) and the eta (M, ~ 550 MeV).

The masses of the lightest meson and baryon containing a charmed quark (c quark), DT = cd
and A} = ude, are (1869.4 + 0.5) MeV and (2284.9 + 0.6) MeV, respectively. The threshold
center-of-mass energy to produce a DT D™ pair in ete™ collisions is approximately 3.74 GeV
> 1GeV. Since we are interested in a low-energy regime ( <1Gev ) one can neglect heavy
quarks contributions and consider the part of QCD Lagrangian, containing only light flavors.
In addition, as one can conclude from Eq.(2), light quark masses are much smaller than hadronic
scale. Therefore, as a good approximation to describe low-energy QCD one can consider QCD

Lagrangian in the so-called chiral limit m,, mg, ms — O:

. 1 V
ﬁSCd =Y qiq- EGW@GQ‘ . (3)

l=u,d,s

0
qed

discrete symmetries P,C, T, has additional symmetry, called chiral symmetry. To investigate

The Lagrangian L., in chiral limit, apart from gauge symmetry,Lorentz invariance and the

this symmetry, we decompose the quark fields into its chiral components according to

1 1
q=§(1—75)q+§(1+75)q=PLq+PRq = qL+4qr;

here P = P;i and P, = Pft are correspondingly right-handed (R) and left-handed (L) projec-

tion operators. They satisfy a completeness relation
Pr+ P, =1,

are idempotent,
P:=Pr, P?!=Pp,

and respect the orthogonality relations

PrP;, = PP =0.



Using above relations, we can write QCD Lagrangian in the chiral limit:

- o 1 )
L= > (Gryillqry + Qiilp qr.) — ZGW,CLGZ . (4)

l=u,d,s

It is invariant under global chiral U(3); x U(3)g transformations

qr +— Urqr, qr+— Urqr,

where U, and Ug are independent unitary 3 x 3 matrices:

Up = exp (_Zz@a/\2> 719R7 U = exp (—ZZ@a/\2> —z@L;

here ©L (g =1, ...,8) and ©F are group parameters.

We can rewrite the symmetry group according to
U(S)L X U(S)R = SU(?))L X SU(3)R X U(l)v X U(l)A (5)

The Noether’s theorem states that the consequence of global symmetry is the existence of
conserved currents. Let’s consider currents, associated with the global symmetry transforma-

tions, given by Eq.(5) (see [4] for details ).

e The U(1)y singlet vector current V# = gvy*q,also called the quark number or baryon

number, is conserved in the Standard Model.

e The U(1)4 axial-vector singlet current A* = gy*v5q is no more conserved due to quantum

effects, referred to as U(1)4 anomaly.
e The SU(3), x SU(3)g conserved chiral currents

WA A?
% 7 - 4 At = 677#757(]7@: 17"'78
2 2
Therefore, we are left with the invariance of the Lagrangian £}, under global SU(3), xSU(3) , x
U(1),, transformations.
We can associate with any conserved current J*¢, 9,J"* = 0 time-independent quantity,

called charge
- / Bz Jo(t, 7)

In our case charge operators

_ / dr VOi(z), Qu(t) = / dr A%(z), Qu(t) = / dz VO(x)



form the Lie algebra of SU(3), x SU(3), x U(1),, group [4]:
[Q(Xl/a Q(XZ/] = ifach%/a [Qih QfLél] - ifach%/a [Q%/a Qix] = ifachih

[QV, Qv] = [Q% Qv] =0

In reality, u—, d—, and s—quark masses are finite and quark-mass term in the QCD La-

grangian mixes left- and right-handed fields:

Ly =—qMq=—(gaMqr + . Mqg). (6)
where
m, 0O 0
M = 0 mq 0
0 0 ms,

is quark-mass matrix. The quark-mass term explicitly breaks chiral symmetry of the QCD
Lagrangian and corresponding currents are no more conserved. More precisely, the divergences

of the currents read [4]

Aa
8“‘/#7(1 = Zq_[M, ?}q,
- a
0 A" = ig{Z, M54,
oV* = 0,
. _ 39° s 1po
a,u,A = 21(1M75q + meyupaGa Ga ,  €0123 = ]-7 (7)

where the last term in the divergence of the singlet axial-vector current accounts for the already
mentioned axial anomaly. Note that the divergences of the eight axial-vector current of Eq.(7)
are proportional to pseudoscalar quadratic forms. Due to smallness of the light quarks masses
on a typical hadronic scale 1 GeV this divergences are expected to be a small and one can

interpret them as the origin of the PCAC relation (partially conserved axial-vector current)

5, 6].

2.2 Spontaneous Symmetry Breaking in QCD

We saw in previous subsection that the light-flavor QCD Lagrangian is invariant under group
G =SU(3), xSU(3), x U(1),,. Now, we have to investigate whether chiral symmetry is realised
in Nature in the Wigner-Weyl mode, i.e. the symmetry is manifest in the spectrum in terms
of multiplets, or whether it is realised as a Goldstone mode, i.e the symmetry is hidden or
spontaneously broken. A continuous symmetry is said to be spontaneously broken or hidden,
if the ground state of the system is no longer invariant under the full symmetry group of the

Hamiltonian.



In the case of Wigner-Weyl mode the conserved axial charges ()% annihilating the vacuum,

Q4l0) =0,

would lead to parity doubling in the hadron spectrum. However, no such degenerate multiplets
with opposite (negative) parity are observed experimentally. Phenomenologically, there are (ap-
proximate) SU(3)y multiplets. In addition,unbroken chiral symmetry would lead to a vanishing
difference of the vector—vector and axial-axial vacuum correlators, (0|VV|0) — (0]AA|0) = 0.
This difference can be measured in hadronic tau decays 7 — v, +nm, leading to a non-vanishing
result [7].

If chiral symmetry is realised in the Goldstone mode, then as it was shown in Ref. [8], the
ground state is invariant only under subgroup of G H = SU(3),, x U(1),, transformations, that

is the charges @, and )y annihilate the ground state (vacuum):

Qv|0) = Qv[0) = 0.

According to Coleman’s theorem [9], if the vacuum is invariant under SU(3) x U(1)y, then so
is the Hamiltonian (but not vice versa). This further implies that the physical states of the
spectrum of the QCD Hamiltonian H, Scd can be organized according to irreducible representa-
tions of SU(3),, x U(1),,. The index V indicates that the generators transform with a positive
sign under parity. The U(1),, symmetry results in baryon number conservation and leads to
a classification of hadrons into mesons (B = 0) and baryons (B = 1). Then, since the parity
doubling is not observed for the low-lying states, one assumes that the Q)% do not annihilate

the ground state:
Q410) # 0.

Thus, the SU(3), x SU(3), symmetry spontaneously breaks down to SU(3),,:
SU@3)., x SUB)r 28 SUB)y .

According to Goldstone’s theorem [10, 11], to each axial generator @%, which does not
annihilate the ground state, corresponds a massless Goldstone boson field ¢*(z) with spin 0,
whose symmetry properties are closely connected to the generator in question. In particular,

the Goldstone bosons are pseudoscalars, which means that they transform under parity as
a hod P, a hod
¢ (t,.T) = _¢ (ta _3:) (8)
Also, they transform under the subgroup SU(3),, as an octet:

Q% 0" ()] = i faet* (x)



Since there are eight broken axial generators of the chiral group, %, there should be eight pseu-
doscalar Goldstone states. The experiment shows that the full octet of pseudoscalar mesons
(lightest hadronic states) 7%, 70, K=, K° K° and 7, indeed carry the quantum numbers of
Goldstone bosons. However, if pseudoscalar mesons were effectively Goldstone bosons, they gen-
erated by the spontaneous breakdown would had been massless. That is not the case in "real”
world because the quark masses explicitly break the symmetry, but since m, 45 < A, ~1GeV
the breaking is expected to be small enough and can be treated as small perturbation.Here the
breaking scale of chiral symmetry A, plays an important role in construction of the effective
theory of QCD at low energies. A motivation for such effective theory,called Chiral Pertur-
bation Theory (ChPT) is that at low energies perurbative approach in the QCD is no longer
applicable, since coupling constant g becomes too large at energies below 1GeV.

In addition, we would like to mention theoretical conditions for a spontaneous chiral sym-
metry breaking in QCD [4]. Firstly, a non-vanishing scalar quark condensate, which is the
quantity (0|gq|0) is a sufficient but not a necessary condition for a spontaneous chiral symme-
try breakdown in QCD:

(0lqq(0) # 0

Secondly, considering the nonzero matrix element of the axial-vector current between the vac-
uum and massless one particle states |¢°), which because of Lorentz covariance can be written

as
(0]A%(0)|¢"(p)) = ipuFod®,

one obtains that nonzero value of Fy (this constant will be introduced again later) is a necessary

and sufficient criterion for spontaneous chiral symmetry breaking.



3 ChPT for mesons

3.1 Transition from QCD to ChPT

We mentioned that the interactions between quarks and gluons, ruled by QCD, are highly non-
perturbative at energies below the breaking scale of chiral symmetry A, ~1GeV. This makes
very difficult any description of the low-energy hadronic world in terms of quark and gluons. On
the other hand it is experimental fact that the low-energy spectrum of the theory contains only
octet of light pseudoscalar mesons (7, K,7) and they interact weakly, both among themselves
and with nucleons. We can expect that in terms of observable at low energies hadronic degrees
of freedom it is possible to construct such an effective feld theory that makes possible to analyse
the low energy structure of QCD.

The theoretical basis, which determined successful application of such effective field theories

was formulated by Weinberg [12]. It boils down to the following statement (conjecture):
Quantum Field Theory has no content besides unitarity, analyticity, cluster decomposition, and
symmetries.
This means that in order to calculate the S-matrix for any theory below some scale, one uses the
most general effective Lagrangian consistent with these principles in terms of the appropriate
asymptotic states. We will follow this principle in the construction of an effective theory for
the strong interactions.

Chiral perturbation theory (ChPT) provides a systematic method for discussing the conse-
quences of the global flavor symmetries of QCD at low energies by means of an effective field
theory.At quite low energies, the corresponding Lagrangian is expressed in terms of the mem-
bers of octet of light pseudoscalar mesons (74,7, 7% n, KT, K—, K and K°). Such effective
field theory is called the ChPT for mesons. We note that it is also possible to construct the
ChPT for baryons (like protons and neutrons), but it is beyond the scope of this thesis.

In order to relate effective theory with underlying theory (QCD) let us consider generating
functional of QCD in the presence of external fields. In order to do this, we equip the QCD
Lagrangian with external fields (sources, [13], [14]) v*(z),v(, (¥), a*(2), s(x), p(z) coupled to
the currents V#@ VH A (see sec.1.1), as well as scalar S = gq and pseudoscalar P = igy°q

densities:

_ 1 _ :
L=LYy+ Leat = Loy + Tru(v" + gvé) +v5a")q — q(s — ivsp)gq. (9)

Note that external fields are color-neutral Hermitian matrices:
8 A 8 A 8 8
a a
vt = Z?Ufj, a”:Z?aZ, s = Z/\asa, p= Z/\apa.
a=0 a=0

a=1 a=1

Then the generating functional, wich is a vacuum-to-vacuum transition amplitude in the pres-



ence of external fields, has the form:

expiZ(v, a,s,p)] = (0;0ut|0;in), s, = (0|1 exp {i/d‘*mﬁem(x)} |0)

— (OlTexp (i [ daqla) (ul" () + 350" (@)] — s(@) + P5p()}a(z) ) 0),
(10)

The quark mass matrix M =diag(m,,, m4, ms) is contaned in the scalar field s(z). The Green
functions formed with the current operators of massless QCD are obtained by expanding the
generating functional around v* = Ué) = a" = s = p = 0, whereas for the real world one has
to expand around v* = vé) =a" =p=0,s(x) = M. In the absence of anomalies, the Ward
identities which express the symmetry properties of the theory in terms of the Green functions
are equivalent to gauge invariance of the generating functional under local transformations of
external fields [15].

The QCD Lagrangian £ is invariant under local SU(3), x SU(3), x U(1),, transformations

of the quark fields and external sources[4]:

O(x)

) Vi(@)ar

qr — €xp <—z’

O(x
qr. > exp <—Z é)>VL(x)QL7
ry o Ver Vi +iVed, Vi
L, — VoLV +ivi0,V],
vl(f) — vl(f)—ﬁu(%,
s+ip — Vg(s+ip)Vj,
s—ip — Vi(s—ip)Vy, (11)

where Vg(z) and V() are independent space-time-dependent SU(3) matrices and r, = v, +
ay, l,=v,—a,.
Now, at the hadronic level generating functional is calculated with an effective Lagrangian

L.s¢ but the with same external fields v*, vé), a*, p,s:

exp[iZ(v, a, s,p)] = (0;0ut|0;in), s, = (0|1 exp {i/d%ﬁeff(x)} 0) (12)

This formula provides a link between underlying (QCD) and effective theory (ChPT). While
the left-hand side represents the generating functional for the Green functions of the underlying

theory, the right-hand side only involves the effective Lagrangian.

10



3.2 Construction of the effective Lagrangian for mesons

Since we are interested in processes were the momenta are small ¢ < A, (the low energy
sector of the theory), we can expand the Green functions in powers of the external momenta.
This amounts to an expansion in derivatives of the external fields. However, the low energy
expansion is not a simple Taylor expansion since the Goldstone bosons generate poles at ¢ = 0
(in the chiral limit) or ¢* = M2(for finite quark masses, M, is the pion mass). The low
energy expansion involves two small parameters, the external momenta ¢ and the quark masses
M .Then, one expands in powers of these with the ratio M/¢* fixed [14]. The low energy
expansion of generating functional Eq.(10) is now obtained from a perturbative expansion of
the ChPT Lagrangian:
Lepr=Lo+Ly+ ...,

where the subscript (n=2,4) denotes the low energy dimension or so-called chiral order (number
of derivatives and/or quark mass term). In other words, one can systematically approximate

the underlying generating functional Zgep(v, a, s, p) by a sequence:
ZQCD(U7 a, Sap) = Zeff<’l}, a, 5,]7)(2) + Zeff(va a, S7p)(4) + o

where the generating functionals are obtained using the effective theory. Now, since the sym-
metry of effective theory, containing in the Ward identities is equivalent to gauge invariance of
the generating functional one need to promote the global symmetry of the effective Lagrangian
G = SU(3), x SU(3) to a local one [15]. While the external fields transform according to
Eq.(11), the meson fields ¢, which we associate with the Goldstone bosons, transform with a
nonlinear representation of G, spontaneously broken to H = SU(3)y. Following the formalism
developed in Ref. [16, 17] ( Callan, Coleman, Wess and Zumino or CCWZ formalism) and
applying it to QCD, the meson fields are collected in a unitary matrix field U(¢) transforming
as

U(¢) = VeU($)V],  Vi(w) €SUB),, Va(z) € SUB), (13)

under local chiral rotations SU(3), x SU(3) ;. There are different parameterizations of U(¢) cor-
responding to different choices of coordinates for the chiral coset space SU(3), xSU(3) ,/SU(3),,.

For convenience one chooses the matrix U(z) = U(¢(z)) to be the SU(3) matrix:

¢1(7f)> |

U(z) = exp (z
where

70+ %77 Vort V2Kt

8
¢x) = D Aada(x)=| V2r =4 oy V2KO | (14)
a=1 \/§K_ \/§KO —%77

11



The local nature of G requires the introduction of a covariant derivative
a,U =0,U —ur,U+iUl,,

d,U -5 Vid, UV}

and of associated field strength tensors lfy and ﬁ, corresponding to the external fiels r, and

[

I
5’, = Oury — 01y —ilry, 1,
fr, = 0, — 0l —illy, L)

Finally, we introduce the liner combination
X = 2By(s +ip),

with the scalar and pseudoscalar external fields [14]; By is a constant which can be related
to the quark condensate. Introduced quantities together with their transformation properties
under the group (G), charge conjugation(C) and parity (P) (see Table 1, [4]) can be used for

construction of the locally chiral invariant effective Lagrangian :
['eff =Lo+ Lo+ Ly+ ...,

where due to Lorentz invariance only terms in even powers of derivatives occur. Note that since

U is unitary UUT = I, L, can noly be a constant. Therefore ChPT Lagrangian for mesons has

a form
Lepp=2Lr+Ly+ Ls+ ..., (15)
’ element \ G \ C \ P ‘

U VaUV] ur Ut

dy, - dy U | Vrdy, - dy,UV] | (dy, - -dy, U)T | (& - dU)f
X Vax Vi X" X!

dy - dy,x | Vad, ---dy,xV] | (dy, - da, )T | (M- dry)f
Ty Var, Vi + iVed, Vh —17 I
L Vil V] + V.0,V —rT rt
. VrfEVE —(f3)" L
o Vifh V] —(fm)" R

Table 1: Transformation properties of the building blocks under the group (G), charge conjugation (C),
and parity (P). The expressions for adjoint matrices are obtained by taking the Hermitian conjugate
of each entry.

The L, contains either two derivatives or one quark mass term. In other words Lo called

12



leading-order Lagrangian, contains terms of the chiral order O(p?); £4 contains terms of chiral

order O(p*) ete. To construct each term in L. building blocks should be counted as:

U=0(1), D,U =0®), 1l = OW), fub, fi = O0%), x = O(?). (16)

wvo J py

The general scheme of construction of the L.; in terms of building blocks of Eq.(16) can
be outlined as follows [4]. Given objects A, B, ..., all of which transform as A" = VRAVLT,
B = VRBVLT , ..., one can form invariants by taking the trace of products of the type ABT:

Tr(ABY) — Tr[VRAV) (VaBV)T] = Te(VRAV V. BV} = Te(ABTVIVE)
= Tr(ABY).

The generalization to more terms is straightforward; the product of invariant traces is invariant:

Tr(AB'CD"), Tr(AB)Tx(CD"), ---. (17)

3.3 The leading-order effective Lagrangian

One can apply this formalism to construct the most general, Lorentz,C,P and locally-invariant,

effective Lagrangian at lowest chiral O(p?) [4, 13, 14]:

2 2

F, F Fy
Ly = ZOTr[dHU(d“U)T] + ZOTY[XUT + U] = Z()(duUd“UT + xUT + U1, (18)

where it is assumed that (...) = Tr[...] and d*U' = (d*U)". Here L, contains two free
parameters, called low energy constants Fy and By. Note that the £, has the same for both
SU(3) and SU(2). In order to determine the constant Fj note that the Noether currents

Ve Am® from Lo are given by

2

a FO T
Ve = —@ZTrQ\a[U,@“U]), (19)
F2
At — —iZOTr (\{U, 0"U'}). (20)

Then to find the leading term one should expand A*® in the meson fields,

ApO*
Fo

FQ
A”’“I—iZfTr<)\a{1+“',—i +~~}>:—F08“¢>a+-~

such that we can calculate the matrix element of the axial current between a one-boson state

and the vacuum,

(o[A*(2)|6°(p)) = (0] = Fod"¢a(2)|¢"(p))
= ip'Fyexp(—ip - x)§®,

13



Thus, the Fy can be identified with the pion (meson) decay constant(in the chiral limit), which
is measured in pion decay 7t — (T, , Fy = Fr[1 + O(M)]. The constant B, which appears
in the field y, is related to the explicit symmetry breaking. One can choose p =0 and s = M
(x = 2ByM) and expand the symmetry breaking part of Lo in powers of the meson fields

¢* ¢

1
£58 = §FOQBTr[M(U +U")] = (my +ma +ms) BIFg — 9t 24F¢

+ -1, (21)

where the superscript SB refers to symmetry breaking. The first term in the right hand side of
Eq.(21) is related to the vacuum energy, while the second and the third are meson mass and
interaction terms, respectively.One can show that B, is proportional to vacuum expectation

value of quark condensate:
(01qq|0) = —=3F Bo[1 + O(M)). (22)

Furthermore the meson masses, calculated from Eq.(21), in the case of isospin symmetry (m,, =

mg = m) are given by

M2 = 2mBo[l +O(M)],
Mg = (m+mg)Bo[l+O(M)],
M2 = §<m+2ms)30[1+0(M)]. (23)

This results, in combination with Eq.(22) are referred to as the Gell-Mann, Oakes, and Renner
relations [20].Furthermore, the masses of Eq.(23) satusfy the Gell-Mann-Okubo relation

AM% = 4By(m + my) = 2By(m + 2m,) + 2Bym = 3M? + M? (24)

which is found to be fulfilled in nature to 7% accuracy. We see that quadratic masses of the
Goldstone bosons linearly depend on the quark condensate and the quark masses. The latter
result is supported by the analysis of the data on K™ — 77w~ et v, [18][19], which means that
the quark condensate really characterizes spontaneous chiral symmetry breaking in QCD.
One can now calculate tree diagrams using the effective Lagrangian £, and derive all so
called current algebra predictions (low energy theorems). Moreover, current algebra is only the
first term in a systematic low energy expansion. Working out tree graphs using £, can not be
sufficient because the tree diagrams are always real and thus unitarity is violated. One has to
include higher order corrections to deal with this problems. In order to do it in a consistent

fashion, one needs a counting scheme to be discussed next.

3.4 Chiral counting scheme

So far we have only considered chiral Lagrangian for meson at leading order, i.e O(p?). As

was already pointed out tree level contributions from L, violates unitarity. Indeed, consider
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the pion-pion (77) scattering to leading order. The scattering amplitude in the isospin limit

m, = myg can be decomposed as
M(ﬂ'aﬂ'b — 7rc7rd) = 5ab§CdA(3, t,u) + 5“5“%1(25, u, s) + 5“d§bcA(u, s, 1),

where u, s, are so-called Mandelstam variables and A(s,¢,u) is invariant amplitude. One can

calculate A(s,t,u) from Lo:
s — M?
F?2

a parameter-free prediction [21]. Note that A(s,t,u) is real. However, the unitarity requires

A(s, t,u) =

the partial waves t! to obey
4M?2

S

Imt) =4/1 - ‘2

‘L‘ﬁ ;
here I denotes the isospin I = 0,1,2 and [ is azimuthal quantum number [ = 0,1,2,---.The
correct imaginary parts are only generated perturbatively by loops. Then the question arises
whether it is possible to take into account loop correction in a consistent manner, such that
one could calculate given matrix element with defined accuracy, using effective Lagrangian. It
was shown in Ref. [12] that it is, indeed possible and corresponding rule, known as Weinberg’s
power counting scheme (or argument), have been formulated.

Consider an arbitrary loop diagram based on the general effective Lagrangian L.;r = 3, Ly,
where n denotes the chiral power of the various terms. Then the amplitude A of a diagram
with L loops , I internal lines, and V,, vertices of order n behaves in term of powers of momenta

as
1

Ao [ T (25)

Then let A be of chiral dimension D = 4L — 21 4+ °,,nV,,. Using the topological identity
L=1-5%,V,+1 toeliminate L we find

D=) Va(n—2)+2L+2. (26)

Note since the chiral Lagrangian starts with Lo, i.e. n > 2 the right-hand-side of Eq.(26)
is a sum of non-negative terms. Consequently, for fixed D, there is only a finite number
of combination L, V,, that can contribute and. In other words, only finite number of terms
in the L.;; are needed to work to a fixed order in p, and the chiral Lagrangian acts like
a renormaliazable field theory. Furthermore, each additional loop integration suppresses the
amplitude by two orders in the momentum expansion. To illustrate this scheme, consider
again mr scattering. At O(p?), only tree level diagrams composed of vertices of £, contribute
(Vasa = 0, L = 0) (see Fig.1(a), [22]). At O(p*), there are two possibilities: either one-loop
graphs composed only of lowest-order vertices (V,,~o = 0, L = 1), or tree graphs with exactly
one insertion from L4 (V; =1, Vo4 =0, L = 0) (Fig.1 (b)). Finally, at O(p°®), Eq.(26) allows
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Figure 1: Feynman graphs contributing to 77 scattering at (a) O(p?), (b) O(p*), (c) O(p%).
The square denotes vertices from L4, the circle a vertex from Lg.

for four different types of graphs: two-loop graphs with L, vertices (V,,~2 = 0, L = 2); one-loop
graphs with one vertex from L4 (V4 = 1, Vo4 = 0, L = 1); tree graphs with two insertions
from L4 (V4 =2, V54 = 0, L = 0); and tree graphs with one insertion from Lg (V; =0, V5 = 1,
Vis¢ =0, L =0),(Fig.1 (c)).

Calculating loop graphs, we might expect, that a given amplitude is proportional to some
power of the parameter p/A,, where 1/A, plays a role of expansion parameter of the effective

Lagrangian. There is an estimate of A, based on loop expansion [23]:
Ay ~AmFy =~ 1.2 GeV, (27)

as well as improved estimate [24, 25]:
47TFO
Ny

where Ny is the number of light flavors (Ny=2, 3). The former estimate stems from the fact, that

Ay ~

the greater Ny is, the more number of mesons can run in loops. Therefore, one would expect
considerably better convergence of the chiral expansion in the SU(2), x SU(2), framework,
because in this case Ny =2 and |p| = O(M,).

In addition, note that effective theory contains Goldstone bosons as the only dynamical
degrees of freedom. Therefore, it must fail once the energy reaches the resonance region, hence
for p?/ Ai ~ p*/M?2,, ~ 1. The lightest resonance, observed in 77 scattering in the I =1 =1

channel is a p resonance: M,., = M, = 770MeV. It is therefore appropriate to choose
A, ~ M, ~ 770MeV, (28)

which is consistent with the estimate Eq.(27).

Now, based on general formalism, outlined in Sec.2.2 one can construct, in term of building
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blocks Eq.(16), the effective Lagrangian at higher orders. However, the number of indepen-
dent terms and corresponding low-energy constants increases rapidly at higher orders. Note
that in contrast to Ly, which has the same form for both SU(2) and SU(3), the number of
terms at higher orders is different in both theories because, although both have the same most
general SU(NN) Lagrangian, certain matrix-trace (Cayley-Hamilton) relations render some of
the structures redundant, such that the minimal numbers of independent terms differ.One can
summarize for chiral SU(Ny), Ny = (2, 3) as follows [22]

O(p*): Ly contains  (2,2) constants (Fy, By),
O(p'): £, contains (7,10) constants [13, 14],
O(p®): L¢ contains (53,90) constants [26]

(discounting so-called contact terms that depend on external fields only).
For the two-flavor case the effective Lagrangian at next-to-leading order has the form
l

l
Lo=Ly = (@UTU) + f(dﬂ(ﬁdm) (d,U*d,U)

I l
+ % (xTU+ Ut )? + 14 (d"U*d,x + d*x*d,U)

1
Fls (FRUFUty 4 20

5 ([ d"Ud"U* + fr,d"U*d"U )
T U+ S () ()
16 1 1 3)UX X

1
b (hy — hs) Re(det) — hoy (S35 f%4 4 £ f1) (29

and satisfies local chiral invariance, Lorentz invariance, P and C [13, 27, 28].The symbol (- - )
denotes the trace in flavor space. The low-energy behavior of the Green functions at next-
to-leading order is determined by 7 low-energy coupling constants (chiral couplings) Iy, -, l7.
The terms proportional to hy, hy, hy do not contain the pseudoscalar fields and therefore not
directly measurable. Although, in principle, chiral couplings are calculable functions of Agcp
and the heavy quark masses, the main source of information about these couplings is low-energy
phenomenology.

As one can see, the Lagrangian £, contains terms which are not presented in L,. This
is the general feature of effective field theories, which are non-renormalizable (i.e. an infinite
number of counterterms is required). However, order by order in the momentum expansion
they define a renormalizable theory. If we use a regularization which preserves the symmetries
of the Lagrangian , such ads dimensional regularization ,the counter-terms needed to renor-
malize the theory will be necessarily symmetric. Since the ChPT Lagrangian L.g is the most
general chiral invariant Lagrangian,i.e it contains all terms permitted by the symmetry, the
divergences can then be absorbed in a renormalization of the coupling constants occurring in
the Lagrangian[29].At one loop , the ChPT divergences are O(p*) and can be eliminated by an

appropriate renormalization of the low-energy constants [; and h;.
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4 Virtual photons in ChPT for mesons

4.1 Effective Lagrangian at O(p?)

We have consider in previous section ChPT for mesons in the strong sector. However,since
there are electrically charged mesons (7%, 7, KT, see Eq.(14)) it is necessary to include elec-
tromagnetic interactions in ChPT framework to analyze the electromagnetic corrections to
meson masses, scattering amplitudes an so on. In a first step, the electromagnetic field is made
dynamical by including the appropriate kinetic term and by enlarging the external vector field
in the generating functional

Uy = vy — QA (30)

where A, is photon field and @) is a quark charge matrix, which is given in a two-flavor case by

()

(@7 = (@)

Such an inclusion of electromagnetism via minimal substitution does not generate the most

€
9=3

general effects due to virtual photons.
Let us consider the part of the QCD Lagrangian coupling quarks to photons, decomposed

into chiral components
Lowm = —qQAN"q = —qrQAN qr — (1QAN" a1,
If we introduce the so called spurion fields Qg(x), Qr(z) and rewrite Loy, as follows
Lem = —qrQrANY qr — 11Qr AN qu,
then L, will be locally chiral invariant, if the spurions transform under SU(2);, x SU(2)g as
Qr—g1Qrgl, gr€SUQ);, I=LR. (31)

In the presence of electromagnetism a consistent expansion scheme is obtain if the electric
charge e is of chiral order O(p) [31]

e, Qr, QL = O(p), Au = O(1).

Using the spurions Qg(x), Qr(z) as additional building blocks and the counting rule for
them, one can construct the most general Lagrangian, which includes electromagnetic interac-

tions and which is consistent with the chiral symmetry, P and C' invariance. One then sets the
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spurion fields to the constant charge matrix Q:

Qr(z) =Qr(z) =Q

At leading order for an arbitrary number of light quark flavors the effective Lagrangian has a
form [30, 31]

F2
£@ = f(d”U*duU + xTU +UTy)

1 1

—F"Fw = o (0"AL)? + C(QrRUQLUT) . (32)
a

where F,, = 0,A, — 0,A, denotes the the photon field strength tensor, a the gauge fixing

parameter, d, the generalized covariant derivative,
d,U = 0,U —i(v, +QrA, +a,)U +iU(v, + QLA, — a,) (33)

The term in EéQ), proportional to coupling constant C' gives an electromagnetic contribution

to the masses of the charged mesons:

B 2Ce?
m F}

(M2 = M2) = (M = M), (34)

The equality of electromagnetic contributions to pion and kaon mass differences in the chiral
limit is known as Dashen’s theorem [32].

From EéQ) one can derive equation of motion for matrix U

_ _ _ _ _ 1 - _
dud“U0 = Ud,d'U* + Ux* = xU* = S(Ox* = xU")
4C

+— (0QU+Q - QUQU™) = o, (35)
Fg
and for the photon field A,
-T2
[ng _ (1 _ i) aﬂay} . Z?wduU[Uﬂ Q) = 0. (36)

4.2 Effective Lagrangian at O(p*)

The Lagrangian LgQ) generates one-loop graphs consisting of meson and photon lines. They
are of order O(p*) and contain divergences, which should be absorbed by adding tree graphs,

(@)
4

evaluated with the next-to-leading order Lagrangian £;*’. Consider loop expansion from point

of view of path integral formulation of quantum filed theory. The generating functional reads,
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up to and including terms of order O(p?)

' i [ diad (@ @
ezZ[v,a,s,p} _ /[dU] [dAH]G fd {EQ +L£, }7 (37)

where [dA,] means the path integral measure for electromagnetic field. One should calculate
Zv,a, s, p| at one-loop level. To this purpose, we note that the classical field theory associated
with a given Lagrangian is equivalent to the set of tree graphs of the corresponding quantum
field theory. Thus if we use the classical field equations to evaluate Z[v, a, s, p|, then Z[v, a, s, p|
generates Green functions at tree approximation (leading order) [33, 34].

Since the vertices of the Lagrangian ESLQ) only occur in tree graphs, the contribution from
L’le) to the generating functional can be calculated by evaluating the action [ dx /Jle) at the
classical solution of the equations of motion. Therefore the most general Lagrangian at O(p?)
can be simplified with the help of the equations of motion.

The next-to-leading order Lagrangian in the presence of virtual photons was constructed in
Ref. [31]. It has a following form for two-flavor case[27, 35]:

L = Lo+ FHk(d"UTd,UNQ?) + ka(d*U*d,UNQUQU™)
+hs((d"UTQU){d, U QU) +(d"UQU ") (d, UQU™))
+hy (" UTQUNdUQU™) + ks(x U + Ut x)(Q?)
+he(x U + UTX)(QUQU™)
T (XU +UxT)Q + (XU + U x)Q)(Q)
+hs(XUT = Ux")QUQU™ + (x'U = U x)QUQU)
+ko(d, U [chQ, QU + d, U[4Q,QIUT)
+k10{ch QUL QU ™) + k11 (chQer,Q + ¢ Qer, Q)
+FH{k(QUQU™)? + kis(QUQU ™ )(Q?) + k14(Q%)?}, (38)

where it is assumed that U = U, A, = Au are classical solutions of equations of motion. The

covariant derivatives cpQr, i@ are defined as
AQr=0,Qr—i[l,,Qrpl, I=R,L.
They transform under SU(2)r x SU(2), in the same way as Qr and @,
Q1 — gr (Cl;@l)g}a gr€SUQ2), I=LR. (39)

Since at later stage, one sets Qr = Q1 = (Q = const, then cﬁQ = —i[l,, Q.
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4.3 One-loop generating functional

The generating functional of Eq. (37) becomes
eiZ[v,a,s,p] — eifd‘lxlfiQ) /[dU] [dA#]eifd4:p£éQ)

To evaluate the one-loop graphs produced by the Lagrangian /ng), we expand the fields
U(z), A,(x) in the neighborhood of the classical solutions U, A, [36]:

i€/ £ 18
U = ueg/ou:u<1+zFU—2FO2+--->u
— 1 1
= U+EU£ZU_TFO2U£U+'”
A, = Au—l—eu, (40)

where U = u? and ¢ is a traceless hermitian matrix, & = 3, £%7%, and 7 denote the Pauli
matrices. Then we substitute this expansion in the action S = [ dxﬁgQ) and keep only terms,

quadratic in the fluctuations &, €,. As a result we obtain [31, 27]

_ 1
S = /dxﬁgQ) - §/dl‘77ADAB773,

where the fluctuations are collected in a new flavor space elements ny = (§,,€,) = (&1, .. ., &3,
€, - - -, €3) and matrix D is the differential operator defined as follows:

5 B 825(117 0 (42)
o0 g+ (1-Yoror )

5(z) = {Y,, 0"} + YY"+ A, (43)

with
Fab Xap ab _1_ap
Vaw) = 2 ) aw = T, 2] (44)
X 0 =277 —rg”’

The elements of these matrices are given by the expressions:

a 1 a

Fub = _§<[T 77_b]rﬂ>7

a a a a 1 a
Xp = —Xpr = X0, X0 = = (Hyr),

ot — ;<[AM7T6L] [AF, 7) + i({Ta, *}o) — T(HLT“MHLTE))
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i{([I{R—i—}[L,TGHFIR—}[[/,7'1)] +a > b>},

2
1
Y= = FO<<[HR> AP + 2DPHL) ),
3
p = é 02<H%>7 (45)

where

D,H, = 0,H,+[l',, Hy)
1 1 _ 1 -
r, = §[u+, d,ul — iiquR“u - §uL#u+,

1 _ 1 _
A, = iqudﬂUuJr = —§uduU+u,
Hrp = u"Qru+uQpu”,

Hy, = u"Qru—uQru’,
1
o = §(u+xu+ +ux ). (46)

The generating functional thus takes the form
: Q) Q) ,
R L Y PRy —

The remaining path integral over fluctuations reduces to a Gaussian integral and we finally

obtain Z[v, a, s, p| at order O(p?):
Zv,a,s,p| = /d:z:ﬁ_éQ) + /da:ﬁ_fl@ + %ln det D, (47)

where all quantities are to be evaluated at the classical solutions U(z), A,(z). The determinant
of the operator D requires renormalization, since it contains divergences of one-loop graphs
with arbitrary number of external legs. These divergences may be absorbed by an appropriate

renormalization of the low-energy coupling constants in the Lagrangian E_ELQ) of Eq. (29):

where )\ is defined as

d—4
A=t {;4 _ ;[111(4@ L) + 1]}

with d denoting the number of space-time dimensions. The renormalized constants I} (u), bl (1),
kI (u) are finite and depend on the scale p introduced by dimensional regularization. The

coefficients ;, d;, o; are some numbers, which has to be chosen in such a way, that the generating
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functional (47) is finite. The resulting Z[v, a, s, p] generates the general solution of the Ward
identities at next-to-leading order.

We see that in order to determine the coefficients v;, d;, 0; we need to regularize the deter-
minant of the operator D. Thus, we have to separate out the divergent part of the one-loop
generating functional

Zone toop = %m det D.

There exists the so-called heat kernel method [37], which allows to calculate the divergent part
of the Indet D. However, this method can be applied (at least, without modifications) only to
the differential operators of so-called minimal kind. The operator D is nonminimal in general.
It becomes minimal when the gauge parameter is set to 1: @ = 1 (Feynman gauge). This is the
case considered in Ref. [31]. Using the heat kernel method for the operator D, one obtains the

divergent part of the one-loop functional [13, 31]:

o 11 1 L1 ,
Zonelloop = 162 g1 /d4x Sp <12YWY“ + 2A2) + finite parts, (49)

where Sp means the trace in the flavor space ! and Y, denotes the field strength tensor of
Y,

1y

Yo=0Y,—0Y,+[Y,Y.]

One then can find the coefficients ~;, d;, 0;. The coefficients ;, d; are specified in Ref. [13], and
o; in Ref. [27].
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4.4 [-functions in arbitrary gauge

Our goal from now on, as well as the main aim of the present thesis, is to find the o; in an
arbitrary covariant gauge a .
As we have already mentioned, the coefficients o;, or alternatively the g-functions, defined

from Eq. (48) as
a1
bi=n dp 16727

were calculated in Feynman gauge a = 1. In order to extend the evaluation of o; to the case of

the arbitrary covariant gauge , we chose another method of calculation of the divergent part of
the one-loop functional Zone 1o0p [13, 38]. In the first step, we expand the determinant of D of
Eq. (41) in powers of the operator ¢ :

Zonetoop = %m det(Dy + 6) = %m det Dy + %Tr(Dglé)
—%Tr(DgléDalé) + éTr(DgléDgléDglé)

—%Tr(DgléDaléDglcSDalé) + finite parts, (50)

where trace Tr denotes, in coordinate space, the integral Tr{...} = [dx(x|Sp{...}|x). We
have written out only terms, which contain the ultraviolet divergences. In momentum space
at large momenta the matrix element of the operator Dy is proportional to 1/k* while the

matrix element of the operator ¢ is proportional to k. Each trace in the sum at large momenta

1
kn>

are only traces presented in Eq. (50). We checked that in case of the minimal operator D, the

is proportional to the integral [ d*k:L, which is divergent only for n < 4. Therefore, divergent

expansion (50) leads to the same divergent part of Eq. (49), obtained by the heat kernel method
(this was done in the strong sector, without virtual photons). Below we will use dimensional
regularization as a convenient one.

To perform the calculations in the arbitrary gauge we at first explicitly expand the traces

in the flavor space n. For the first trace we have:
Sp{D, 6} = (D;16)4 = (Dy M ap(6)™ + (Dy )0, (6)77,

where we used the fact that (D;')a, = (Dy")os = 0. Inserting necessary number of completeness

relation in coordinate space [ dz|z)(x| = 1, we obtain
Te(Dy'0) = /dwdy {105 asly) (W1(8)" ) + (2 (Dg " )oply) (y1(6)7 ) }
The matrix elements of the operators D' and ¢ have the following form:

(#(DgHly) = 0“A(z —y),
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Z|(Dy)"™|y) = —g"™ Az —y) + A (z —y),
Wl(6)*Plzy = 2v P (y)oLd(x —y) + P (y)d(z —y), (51)

where

ddk e—ik(:c—y)
_k2 !
d v
A% KR iy
2n) 1 ’
FY, YR 4 A (52)

Az —y) = /< my
A(a—y) = (a=1) [
(@) = (@)

Using Eq. (51), we separate the divergent terms, that depend on the gauge parameter (through
A, (7)), and hereby obtain for Tr(Dy'0):

Te(D;'0) = Te(D;'8)~" + [ dudyds,(z — y) (4] (0)a),

where Tr(Dy'6)?=! means the trace, which is calculated in Feynman gauge. We note, that since

Y;p(l') = 0, then the matrix element of the operator d simplifies to

(Yl(0)7|z) = " (y)o(x — y). (53)

This fact considerably reduces the number of divergent integrals, that one has to evaluate.
Substituting the expression (53), partially integrating over the coordinate y and then taking

integral over x, we get

Te(D;'6) = Te(D; 0"~ + [ dy A,y (0)e” (1),

The quantity A,,(0), which is the integral in momentum space, is zero in dimensional regular-
ization,
dk k

dk
| G =0 vy mi 8g,(0) = (0= 1) [ 5

/ % 1 0
™~ Jov (2m)d k2

Thus, Tr(Dy'6) = Tr(D,'0)*=!. We perform the same steps for other traces in the expansion

(50). Details are provided in appendix B. The divergent part of the one-loop functional in the

arbitrary gauge is given by the expression

) . 1 1
dZUZOHG loop — d“}Zonelloop + ZFOQ(l - a)m /dx{<[HL7 A#]2> - <[HR7 A,LL]2>
3 1
HHEo) ~ 2 Ha, AJGY) = S(GuG") — SFRZ(Hr+ Hy He— HiP) |, (54)
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where div means divergent part, Z = C/F; and G* is defined as
G* = utyQu — uci Qu™.
Next, with help of Eq. (46), we simplify the result:
(Hp, A = (Hr, AP = —(d*UTd,UQUTQU + d*Ud, UTQUQU™) + 2(Qd, UQd*U™),
1 _ L
(Hio) = 5 ((XU" +Ux" +x"U+U"X)Q%)
1 _ _ _ _ _ _ _
—5 (U™ + UXT)QUQU™ + (XU + UT)QUTQU),
1 _ _ _
([Hr, A, G") = =5(du U™ [RQ, QIU + d,U1e1Q, QIUT)
1 _ _ _ _ _ _ _
—§<duU+c’§QUQ +d,UQUxQ + d,UckQUQ + d,UTQUQ),
(GuG") = (rQcruQ + 1 Qer,Q) — 2(cgQUer, QU™),
([Hp + Hp, Hr — H)*) = 32(QUQUTQUQU Y — Q*UQ*U™). (55)

The second trace in the expression for ((Hg, A,|G") can be transformed, using partial integra-

tion and the equation of motion, obeyed by U [39]. We obtain

(d,U+QUQ + d,UQU*cHQ + d,UckQU*Q + d, U QU Q) =
(a"U*d,UQUTQU + d*Ud,UTQUQU™) — 2(Qd, UQd"U™)

(O = UX)QUQU™ + (x0T ~ T x)QU*QU)
HFRZ(QUQUTQUQUT — Q*UQ*U™). (56)

Thus, the final result for divZype 100p 1S

. a= 1
dl’UZone loop — dZUZOnelloop 167T2<d 4 F2 / dx{

411<(XU+ +Ux" +xTU + U )Q?)

_111<(XU++UX JQUQU* + (x"U +U"X)QU*QU)
+411<(>(U+ XHRUQU™ + (XU = U™)QU*QU)
+;<duU+[c‘§Q, QU + d,0[¢Q, QU) + i<c§%QUcLuQU+>

2 (e + Qe Q) ) 657)

In case of two flavors the first term of the integrand in Eq.(57) can be transformed, using
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the following trace identity for 2 x 2 matrices A, B and C':
(ABC) + (BAC) — (A)(BC) — (B)(AC) = (C){AB) + (A)(B)(C) = 0
(WU +UXT + XU+ TX)Q%) = (U + U@ + (XU + U X){QUQU™)
Finally, if we write the coefficients o; as
o; = Ule + o,

where 0%=! are ones calculated in Feynman gauge, then ¢¢ can be directly read off from Eq.

%

(57). They are presented in Table 2.

’ l ‘ oy lof)
1 0 - -1z
2 0 27
3 0 -3
4 0 27
51 3(1—a) —+7 — 1a
6| —1(1—a) 27 + ja
7 0 0
8 | 1(1—a) S _Z—1a
9 | :(1—a) 8 la
10| 3(1—a) 35(1—a)
11| -3(1—a) —3(1-a)
12 0 S-2Z+ 57
13 0 —3-3z-L2z
14 0 2 +3Z+ 1227

Table 2: The coefficients o; and their gauge dependent parts of'.
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4.5 Discussion of the result

Let us now discuss the validity of the result. Fist of all, gauge-dependence of the oq is an
agreement with that only one calculated in Ref.[40].

We checked, further, that the parts of the of do not introduce the dependence of the physical
quantities on the renormalization scale p, as it should. Namely, we considered the masses of
pions and 77 scattering amplitudes, calculated at one-loop level with virtual photons included
[27, 35]. The expressions for them contain certain combinations of coefficients k] (u). Consider,
for example, one of such combinations, occurring in the expression for the mass of charged
pions:

20

1
O = =" [K] 4 K5 — K — Z(23K5 + by + 18K

Acting by the operator ,u% on both sides, we get the S-functions, or equivalently the o; coef-
ficients, on the right-hand side. Using Table 2, we see that the quantity M%Oﬂi still remains
equal to zero, as it should. Note that we cannot check the gauge invariance of physical quan-
tities, since the expressions for renormalized constants k] (u) may contain parts, that do not
depend on p, but may in general depend on the gauge parameter [41].

Finally, we checked that the scale-dependent part of the relations between two- and three-
flavor low-energy constants (LECs) [42] , k] () and K] (i), are gauge-independent. Here few
comments are in order. The Authors in Ref. [42] provide the matching condition for aforemen-
tioned LECs in the Feynman gauge . The so-called two flavor limit of the three-flavor effective
theory is considered. More precisely, the external sources in the three-flavor generating func-
tional are restricted to the two-flavor subspace; strange quark mass is much larger than the
external momenta and the up and down quark masses mg > p, m,, my . In this limit the three

flavor functional reduces to the two flavor functional

tho—flavorlimit = tho—flavor

The both sides reproduce low-energy singularities associated to the propogation of massless
pions and photons and the corresponding non-local contributions should cancel. In other words,
pions and photons are not relevant for the matching of LECs (only the parts of generating
functional, corresponding to heavy particles n and K mesons, contribute) and therefore, the
relations between k! (1) and K7 (p) remain valid in case of arbitrary gauge parameter. Consider,
one of the relations [42]:

6 1 4 1 1 1 M3

K=K+ —Ki+ -K} — -K Z——(In

(R g 1
5 5 9 5 10 107 3272 M_%%

where My is kaon mass and the coefficients K] was calculated in arbitrary covariant gauge

by A.Agadjanov in his thesis. Acting in the same way as in the case of C .+, we see that this

relation does not depend on the gauge parameter.

28



5 Conclusion

We investigated the gauge dependence of the one-loop generating functional for mesons and
virtual photons, as well as of S-functions of the electromagnetic low-energy constants . We
faced with the problem of nonapplicability of the conventional heat-kernel method. Therefore,
we made calculations,using alternative approach. Finally, we discussed the validity of the
obtained result. Namely, we made sure that our result agrees with one obtained by another
approach. Then, we showed that the [-functions do not introduce the dependence of the
physical quantities, such as the masses of pions and 77 scattering amplitude,on renormalization
scale. Finally, the scale-independence of relations between three- and two-flavour S-functions
was verified.

We plan to analyze how the scale-independent parts of the constants k}(x) depend on
the gauge parameter. In addition, we want to study the problem in context of lattice QCD

calculation of the low-energy constants.
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Appendices

A Integrals

In this Appendix we collect the divergent parts of necessary integrals, that are needed during

the calculations with help of dimensional regularization. We note that d = 4 — 2e.

1
om)d [ — 2kp + m?2]*  2T(3) 1672

d i 1
/( 5 b " +1p.,

dp pHpYp 1 i N . N
/<2W)d = 2kp+mIE (@) Tenzed N TR F TR+

/ddp prptpp? 1
(

Lo oo Moy A N

1
+g TR+ g R = 2 (m® =) [g" g™ + ¢ g™ + g”g“”]} +f.p.,

dd LoV oA 0 1
/ ( e = " g + g"g” + g" ") + £.p.,

2m)d [p2 — 2kp +m2)4  4I'(4) 1671'26[

dip  p'p'prpPp° L Voo ov | wp o
/ ( = (" 97" + g"° g™ + g9 )k

2m)e [p2 — 2kp +m2]*  4T'(4) 1672
+(g" g7 + ¢ g7 + g g + (9" 97 + Mg + g g R

+(g" 9" + g + g g7 K + (¢ g + ¢ ™ + 97" )KT] + £ p.,

?: vV O oV 12 g €
= (9" g + g"*g°" + g"*g"") g

/ d'p  pp'p ey 1
(2m) [p? — 2kp +m?2)>  8I'(5) 1672

+(g" g™ + g" g7 + ¢ ") g + (697 + 99 + g™ g ) g

+(g” gPU _|_ng9 _'_g)\PgUV)g/Mf + <g,ul/g,0>\ + g,u)\gpl/ + gu)\g,up)go'e] + fp,

/ d'p pUp"ppp kRS 1 i [
(2m) [p2 — 2kp +m2]6  16T°(6) 1672e

(9" 97" + ¢ 9" + 6" g"") (9" g™ + g™ g7 + g*g™)

H(g" g7 + "7 + g ") (g 9"+ 9797 + g g™)
Hg" 97+ g9 + 99N (9 g+ g™ g+ g™ g™)
+H(g9" + 979+ ) (g g+ g™ g+ g g
+(g" g + 9" + 97 g)

(
( a,B oe aagﬁﬁ 046 /BU

)
)
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+ gaagﬁp+gﬁagap ( ;U/ €A usguA
+ geogap+gaa €p ;U/ ,B)\ ,uﬁ 1/)\

)

(9 g
g7 g% + 6P ) (g g + gh g +
)
(
(

~—  ~—

9

(
(
(
(9
+(9%g +gg)
(9 9%)
(9
(9
(

+(g% g™ + g™ g?)

B Calculation of traces

Below, we present the details of calculations.

B.1 Tr(D,'6D,"6)

We expand the second trace:

g*’g* + g"g” + g

aX BV 6)\ av (g,upg _i_guegpa_'_g,ucr I/E)
gupgﬂa + g#B gpo + guchVB)

uagua)

oAghr 4 gm (g g% + 9”7 g") + (g g™ + g™ ™) (9" 9" + "7 g"")
+(g?g™" + g™g E“)(g” 9°7 +¢"7g") + (¢*"g" + g7 g™ ) (g™ g% + g™ ")
(69" + g7 ¢"") + (¢ ¢" + ¢°"9%) (9" g°" + ¢*"g**)] + . p.

Sp{Dg 0D 0} = (D5 ")an(8)"(D5 " )ea(d)™ + 2(Dg a(0)*7 (D5 ) (0)
(Do e (0)(Dg ) (0)" (B.1)

Analogously, we separate the divergent terms, that depend on the gauge parameter (through
A, (z)), and hereby obtain for Tr(Dy 6Dy "'6):

Tr(Dy 0D, ') = Tr(Dy'6Dy'o)*="

+2 / drdydzdu Ax —y)Aop(z — u)(y|(0)*]2) (ul (0)**|x)
~290p / drdydzdu Az — y) A (2 = u)(y[(6)|2) (u|(0)"|z)

+ / drdydzdu Ay, (x — y) A (z — ) (y|(0)™]2) (u](6)"7|z)
= Tr(Dy'6Dy'6)*=" +2I + 2K + L, (B.2)

Thus, it is necessary to find the divergent parts of the integrals I, K, L. The integral I is

I = /dxdydzdu Az —y)Asp(z —

u)[2Y,(y)06(y — 2) + c(y)o(y — 2)]*7

x[2Y, (u)0ld(u — x) + c(u)d(u — x)]P*

= /d?/du [—2Y, ()0l A(u — y) + b(y) A(u — )] X
X[=2Y, (u)0; Aop(y — u) + b(u)Aop(y — w)]” = L + Ly + I3 + I, (B.3)
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where the following matrix is introduced:
b(z) =Y, Y*+A—(0,Y"). (B.4)
as well as notations for the integrals:

o= 4 [ dydu Y ()Y () Iy,

o= =2 [dydu Y )y (),
Iy = =2 [dydu Y V),
/ dydu b ()b (u) L1, (B.5)

with

I = 0yA(u—y)0 A% (y — ),
I = 0yA(u—y)A7(y — u),
I = A(u—y)0A™(y — u),
I = Alu—y)A”(y —u). (B.6)

The Lorentz indices are raised and lowered by the metric tensor g"”. With the help of Eq.(52)

we write the integrals (B.6) in momentum space. For the first integral we have

d d V.o
Jrver (a N 1) dky d°ky kl kl k?kg e—i(kg—kl)(u—y)‘
' (2m)4 (2m)* kik3

Introducing new integration variables

(k1. ko) = (k1,p) 1 p= kg — Fy,

with the transformation Jacobian J = 1 and Feynman parametrization, the integral 11" takes
the form :
d’p
I"er — (g — 1 / e—@p(u—y)Ferﬂ7
1 ( ) (27T)d 1

where

d V1.0 L.P V1.0 L.P LM
Fiver _ 2'/dx/dy/dkl kYRS KT p* + kY kS kUK '
k2 +2(1 — 2)(kap) + p*(1 — )]

Here and below we use the values of integrals, presented in appendix A; we obtain F{"”:

vo 1 1 1 - o 5 e . .
= 121671'26{ Rt I i e U U I Ul U s U e b U

1
_4[9,11«1/90'{7+gungV+nggJu]}_l_f.p. (B?)
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Then, integrating over the momenta p with help of the formulas

dp d?
/(2 )dp pu —luy) = _35855@_9)7 /(27T]))dp26_2p(u ¥) = _626( )7

we get I1"?? and consequently I, which reads

L =—-2(a-1) /de“@zXa—i—f p.,

167T €

where the result for I; was simplified by summation over Lorentz indices and the use of property
of the matrix V,: Y17 = —Y7% = X*§7; the quantity X¢ is defined in Eq. (??). In the same

manner we calculate the divergent parts of the other integrals in Eq. (B.6). We obtain

L = —(a— /d X0 + f.p.,
9 2(a 167re rX0,b" +f.p.
I; = —(a— 1)1 oy /dxX‘I@Ub‘w—i-f.p.,
1 ao a
I = —fla=1) 16”2 /dxggpb b 4 £ p. (B.8)

The values of integrals from appendix A as well as the following additional formula were used:

dd
[ o = =)

The final expression for the integral I = I; + I + I3 + I; can be reduced to a more simple one,

if we replace b by b7*. As it follows from the definition of the matrix b(x),
b7 = 07" — 20"Y]7 = b7 — 207 X“.
Therefore, we get
I= 1 L d 2bP*0, X ! e §
= —(a- )167T26 T pt 4970 D
The second integral K with help of the Eq. (53), takes the form

K = —g,, / drdydzdu Az — y)A,, (2 — uw)c™ (y)e” (w)d(y — 2)0(u — x)

= —goy | dydu Alu = )2, (y — W (5)e” (u). (B.9)

To calculate its divergent part we write

ddk k,ﬂkl/
K™ =" = —2!(a—1)/ e y)/ d:v/ dy/ 1 3
(2m)d k2—|—2 (1 —z)(kip) + p*(1 — )]
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Then,

1 7/ vo
K= Z(a_ 1)m/diﬂguyggpcp“(:n)c (x) +f.p.

The matrix element ¢ is
= —(p+ X*X")g"

and thus we obtain

K=(a—-1) /d:ch—i—XaX“) +f.p.

162

The last integral L can be written as

L= /dydu ™ (y)e” () Lo pps

where
Lo = A7 — ) Ay — u)
We have
Lo — (a _ 1)2/ d p e~ p(u—y) popuv
(2m)< ’
with

Foprv

_ / dky kYKL (K] + p7) (KD + p)
— ] @) 5 (ky + p)t

ddk‘l k“k:”k"kp
:3'/da:/d/dz/ +f.p. (B.10
y V5200 = g)(kap) + 21— gt P (B10)

Taking the divergent part of the integral in momentum space we get L7PH:

1
Lo = orla—1)° (9" 977 + g"°9" + g"g"*16(u — y) + . p.

7
1672¢
The integral L becomes

1

L=—
24<

a—1)° 16 — /dm P+ XX Gumg0olg" 97" + 99" + g"7g"] + L. p.

L=(a—1)? /dl‘p—i—X“X“) +f.p.

162

Thus, the divergent part of the second trace is

divTr(Dy'6Dy'o) = divTr(Dy o Dyt 6)*=

_ _ L __9ppa a 1 oa pa}
2(a 1)1%26/6@{ 270, X" + g0,
+{2(a—1) + (a - 1)%} 16 L /dw p+ X9X9)?2, (B.11)

36



where div means the divergent part.

B.2 Tr(D,'sD,'s§D,'))
Next we consider the third trace Tr(Dy 6Dy 6 Dy'6). We have:
Sp(Dg 005" 0D5"6) = (Dg )an(8)"(D5 1 )ea(d)™(Dg e (9)
0

+3(Dg )av(0)" (D5 )ea(8)* (D ap(8)" + (D ap(8)" (D )3 (6)" (Dg s (8)"
+(Dy)ep ()" (D () (Dg e (0) (B.12)

We omit the last term, since it produces finite integral, due to Eq. (53). Then,

Tr(Dy oDy 6Dy tS) — Te(Dy oDy 6Dy t6) =" = 3M + 3N +f.p.

= 3/dxdydzdtdudv A — y)A(z — 1) Ay, (u — v) {y|(5)™]2) (¢ (6)"7 [u) (v](§)7*|x)

+3 / dadydzdtdudo {—A(z — y) A, (z — AW — 0)gop — A(x — Y)apA(z — ) A(u — v)gru
FAg (= y) A (2 = 1) A(u — ) Hyl(8)2]2) (t](6)"“[u) (v (5)*7 |z) + £. p. (B.13)

The integral M is of the form

M = /dydtdv [—2Yu(y)8l‘jA(v —y) + b(y)A(v — y)]“b X
X [—2Y,(t)0y A(y —t) + b(t) Ay — t)]b"[—ZYA(v)é?;\AUp(t — ) + b(v) Ay, (t —v)]*

= M, + My + My + M, +f.p., (B.14)
where
My = =8 [ dydtdv Y ()Y (0Y{" (0) Mt
My = 4 [ dydtdv Y ()Y 2 ()0 (v) M,
My = 4 [ dydtdo Y, ()2 ()b ()M,
My = 4 [ dydtdo Y (YL ()" () M, (B.15)
with

MP7P = 9RA (v — )0V Aly — DONA(t — v),
MY7P = OFA(v —y)Or Ay — t)ATP(t — v),
ME"P = OA(v = y)Aly — 1), A (t — v),
MO = Ao — g)OFA(y — DAL — ). (B.16)
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To calculate the divergent part of M!*??_ we write

d'ky d%ky dks k5k5k§k§k§e_wq@—yquxy—ﬂ—wgu—w

(2m)d (2m)d (2m)d K22k (B.17)

M = ia—1) [
Then we similarly introduce the new integration variables:
(k1Ko k3) = (g, k) p=Fki— ks, q= ko — ks, k= ks,
with Jacobian J = 1, and obtain

ddp ddq

o A
eP(y—v)+ig(t y)Gll“’ Upj

MIP — 3(q — 1) /

where

Ak HEY kA RO kP VERENT KPR + EPEVEMRC R + f.p.
;,Ll/>\0'p — 3l / dl’/ d’y/ dZ/ p +4q + 2 2+ p .
R 4 2k[p(z — y) + q(1 — )] + p(z — y + ¢*(1 — 2))]

After integrations, we obtain

1 2 1
Gul/)\ap: - —{(3ph — gt v\ po vp Ap oV
] 11620 (B3P — a9 + 97" Ak gMg7)

+(3¢" = P)(g"97" + g" 9 + gV g") — (0N + )G+ "9 + g )
—(" + ) g g7+ g+ §9) = (07 + ) g g + g g+ g g} + .

Then, integrating over p, g according to the formulas

dp l ”U . ddq v _iq(t— A%
/ e = —idys(y — ) / ad e =053 ),

we get M!"?°. After summation over Lorentz indices and performing of the necessary integra-

tions, the divergent part of M; reads

My, =2(a — 1) /dyabxa nxh 4 f
1=2(a 167r2 o X"+ 1Lp.

The integral M5"7"is

d%p di
(2m)® (2m)

ezp(y—v)Jrzq(t—y)GleUP’

Myt = 2o - 1) [

where

ddk’ k“k”k"k”
Glor — 3'/ d:v/ dy/ dz/ ]4—|—f.p.
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Thus,

1 7
M,uuap _ = 1
2 24 (a ) 1672¢

(9" 97" + g"" 9" + g"7g""]o(y — v)d(t —y) +f.p.

We note that the other integrals M4{?? MJ"’” have the same divergent part. Therefore, we
get

1
1672e

X[9" gop + 000 + 046y +£.p., (B.18)

1
My+ My+ My = —2la— 1) [ do [VOV200 + VOV + ¥yt x

_ 1 i ab yvb/1pa ap ab ya yvb
M2+M3+M4——6(a—1)m/d:c{6}/p XO(b7 4+ ) — 246X X"} 4 £,

The integral N, taking into account Eq. (53), can be written as

N:N1+N2+N3+fp,

where

Ni = =4 [ dydtdv go,c™ ()Y (Y2 (0) N,

No = =4 [ dydtdv gy, () V2 (V" (0) N3,

Ny = 4 [ dydtdv )Y (Y (0) N, (B.19)
with

NP = Ao = y)dy AN (y — I A(t — v),
Ny™ = A%(v = y)oy Aly — )0, At — v),
NGPARE = AP (y — ) AM (y — )OEA(t — v). (B.20)
The integrals NY**, N2’ have the same divergent part as M. Thus,

1

Ny = —ila= D)o g 00" + 979" + ¢"g" 1y — v)(t — y) + f.p.,
ogpre ]' Z g ve vo € g€ v
N = —gla= 1) aesl97 9 + 979" + 979"y —v)é(t —y) + Lo (B.21)

Substituting P YAy = (p+ X2X*) X Xb¢P 167, we obtain

l

1672¢

N+ N =8(a—1) /d:c(p 4 XOXY)XUXE 4 fp.
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The integral N§***¢ is of the form

ddp ddq ip(y—v)+ig(t— TPUNE
eP(y—v)+ig(t y)GBP ne

N??py/\m = (a— 1)2) (2m)d (2)d

where

d O L. AL LV L€
Gapl//\ue 4'/ df]f/ dy/ dZ/ du/dkkkkkkk—}—fp

iE
Using the value of the integral in appendix A and then noting that
IoGJoelg" 97" g™ + perm.] = 192
we get N3, which reads

Ny = 4(a — 1)? /dx P+ XOXYXP X 4 £.p.

16 1672e
Thus, the divergent part of Tr(D; 0D, 0Dy"6) is

divTr(Dy 0Dy 0Dy 6) = divTr(Dy ' Dy oDyt 6)*=!

+6(a Yo Xeorx®

1 i ab yb(1pa ap ab ya yvb
—i(a—l)m/d:ﬂ{&/ X(b +57) — 24b XX}
+{24(a— 1) +12(a — 1)} 16 . /dmp+X“X“)XbXb (B.22)

B.3 Tr(D,'sD,'6D,'6D,"6)
Finally, we calculate the divergent part of Tr(Dy 6Dy 6Dy 6 Dy'6). We have:

Sp(DaléDaléDaléDalé):<D01> ()bc(D_l)cd@ Dg)es(0)9(D5 1) gr(9)*
)

~—
U

g

—

+2(D51)an(8)*(Dy e (8)7(Dp ! )ef((?)”(Dal)AM)““ +1f.p, (B.23)
where we omitted terms, that produce finite integrals. Then

Tr(Dy'6 Dy 6Dy 6Dyt S) — Tr(Dy ' Dy 0Dy 0Dy 1 6)*=! = 4P + 2Q + f. p.
=4 / drdydzdtdudvdrds {A(z — y)A(z — ) A(u — v) A, ,(r — s) X
X (yl(8)™[2) (E1(8)" ) (v (6)7 |r) (s](6)** |} }
+2 / drdydzdtdudvdrds {—A(z — y)A(z — ) A(u — v) A, (1 — 5)Gop
—Az = y)Asp(z = 1) A(u = v)A(r = s)gau + Az = ) Agp(z = ) A(u — v) Ay (r — s)} x
X (yl(8)7[2) (t1(6)”[u) (v](8)"|r) {s1(8)"*|x) + . p. (B.24)

40



The integral P is of the form
= 16/dydtdvds Y)Y ()Y (0)YF(s) Pl + £.p.,

where

prriesp _ A (s —y)oy Aly — At — v)OSAT (v — ).

The integral P***<°? can be written as

P,uu)\ecrp —

(a_1> ddkl ddk? ddk?’ ddk:4 k}f/{?;k{}k’ikik}z —ik1 (s—y)—ike(y—t)—iks(t—v)—iks(v—s)
(2m)® (2m)4 (2m)¢ (2m)*  Kk3K3k ’

Introducing the new integration variables
(kv Koy ks, ka) = (p, K q,r) 0 p=Fky— ko, q=ks — ko, 7 =Fky — k3, k = ky,

with Jacobian J = 1, we get

d d d
p,ul/)\eop _ _(a _ 1) d p d q d'r eip(yfs)+iq(sft)+ir(sfv)H,uw\eo’p
(2m)4 (2m)? (27)4

where

dk ok,p )\k,u V€
JJHvAeap _ 4‘/ dm/ dy/ dz/ du/ ' K7k7h k]B +f.p.

The latter integral has the same divergent part as G5**¢. Thus,

1 !

HVAETP

1
8T'(5) 1672€ 24 579" 97 g™ + perm]é(y — $)d(s — )3(s — v) +L.p.

Substituting Y ?Y/* = —X*X){4? and noting that

Jorgpelgd" g7 g + perm.| = 48g"",

we obtain

P=4(a—1) / dg™ Y Y XIXC 4 f.
(a 167r2 g +thp

We write the second integral @) as

Q=Q1+Q:+Qs+f.p,

where

Qi = 16 [ dydtdvds gosYi () V(Y (0)YP*(5)QT50 + .-
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Q = —16 / dydtdvds gas Y, (y) Y10 ()Y, (0)Y(s)Q55: + f.p.,

Qs = 16 / dydtduds Y2 (y) YA (1) Y (0) Y1 () Q5oer, + £ -, (B.25)

with

TN = 97 A(s — y) O Aly — LAt — v)ISAM (v — s),
QM = 0IA(s — y)OP AN (y — 1)L A(t — v)IEA (v — s),
QPN — P A(s — y)IRATy — DAA(E — v AN (v — s). (B.26)
The integrals QJ”“™, Q37 have the same divergent part as H**°?_ Since
Gop9rGnelg™ 9779 + perm] =192, guegaoguplg™ 979" + perm.] = 192,

we obtain

Qi+ Q2 = 32(a— D7y [ daX"X“X"X" + £.p.
o€

The third integral Q3°7"™ is

d%p d%q dir
2m)4 (2m)e (2m)@

N N N
6zp(y s)+iq(s—t)+ir(s v)ngﬁopzxe ,LL7

QN = (a1 [

where

ddk ko‘kﬁk"kpk”k%’\k“
Haﬁapz/ez\u 5|/ dm/ dy/ dz/ du/ dU/ 24 ]6 +f.p

Performing necessary integrations, we get

;1 i1

afopreu _ 1
@ (@ = 16 1672 120

[gaﬁg‘“’ggpg “+ perm.|o(y — s)d(s — t)d(s — v) +f.p.

Then we substitute Y;"Yé’be)‘Y;“a = XX X" X"37050,0". Since

GoadpsIrwIuclg™’ 9" g°° g™ + perm.] = 1920,

we obtain

Z’ a a
Qs = 16(a — 1)2m/dsz XOXPXP 1 f.p.

Hereby, the divergent part of Tr(D, 6Dy 6 Dy 6Dy '6) reads

divTr(Dy 0Dy 0Dy 6 Dy'6) = divTy(Dy ' 0Dy 6 Dyt o Dy t6) =
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7
1672€

+{64(a — 1) +32(a - 1)*}

+16(a — 1) / dg™ Y Y Xo Xe
i
1672¢

/ dr X XXX (B.27)

B.4 Summation over flavour indices

Thus, the divergent part of the one-loop functional in the arbitrary gauge is given by the

expression
. . a=1 1 1 pa a 1 oappa
div Zone oop = VL5 100p + 5(1 - a)m /dm {—25 0pX* + Zgapb b
F2V X XD — VX (0 4 b7) + 4P X XD — 4g" Y Y X X } (B.28)
1 1
2 ayva\2 aya byb avyaybybd
+{2a—1)+(a—1) }167T2€/dx{4(p—|—X X2~ 2(p+ XX XOX? 44X X X0 X }

For simplification of the result, we have to sum over flavor indices. This is done with help of

the formula, which follows from the completeness relation for the generators A* of SU(NV):

SO(AN)(BAY) = 2(AB) — ;<A><B>. (B.29)

a

We farther set Qg = Qr = Q. Since Hp, = (Qr — Q1) = (Q — Q) =0,
F? F?
XX = 1—%<HLAG><HLA“> = %(Hﬁ)

Then, p+ X*X? = %FOQ(H% and the second integral in Eq. (B.28) is equal to zero:

1 11 1
s XX —2(p+ X X)XXP 44X X X" X" = (16 -5 16) F2(H?) =0.

From the definition of the matrix b it follows that

D= XPOTHO AP QXY B b = 2(X AT 4 AP,

b = TUTH 44X X" + A — 9T (B.30)
Then,
AP XX — 4g Y X X = 4X“X”{;( (A, AY[A% N]) + i({)f‘, A\}o)
_8%(<[HR+HL,V][HR—HL,A”] +aHb>)} (B.31)
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The matrix element 0°* can be written as
1
- —§F0<([HR, APl 4+ DPHp) \Y),
since XAPTwbe — — L[ (A*[I, Hy]). Using Eq. (B.29), we obtain:

U0, X = L FOuHL([Hr, O] + D)),

o = SFR{([H 8,0 + Do) (Hi ) + DV L)),

T X0 X" = — R OMHL T, H),

T XU T = — CF3(0%, [T, Hal),

I XPAP = iFOQ([FM, Hip) ([HR, AM] + ;D“HL)%

XX (20, NIAR N = P ([ A, )[H, A,

XeXt({A%, A} o) — ;FOZ(H%U),

XOXP(([Hp + Hy, N [Hp — Hy Y]+ 0 < b)) = ;Fg([HR + Hy, H— HyP) (B.32)
We also note that D, Hj, can be written as

D,H; = [HR, A#] + Gy,

where

G" = utdpQu — ucy Qu.

After substitution of these formulas into Eq. (B.28), the divergent part of the one-loop func-

tional takes the form

. o 1 1

d“}Zone loop — dzvzonelloop + Z 02(1 - Cl) 1671'26 /d${<[HL? A#]2> - <[HR7 A#]2>
3 1

+(HE0) = 2(Ha, AJG") = S(GLGY) — SF3Z((Hr + Hy, Hr — HL]2>}, (B.33)

where Z = C/Fy.
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