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Abstract

At low energies, the effective field theory of Quantum Chromodynamics and Quantum Elec-
trodynamics (QCD+QED), called Chiral Perturbation Theory for mesons and virtual photons,
allows to evaluate physical quantities in perturbative manner. In present thesis, the divergent
part of the corresponding one-loop generating functional is calculated in case of an arbitrary
covariant gauge. These calculations provide a deeper insight on the low-energy effective the-
ory of QCD4+QED. The p-functions in the three-flavour case are obtained. The independence
of various physical quantities on the renormalization scale is verified. Comparison of the -
functions with the ones given in the literature is made. The obtained results might be used for

the extraction of the low-energy constants from the lattice QCD data.
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1 Introduction

Quantum Chromodynamics (QCD) is regarded as a theory of strong interactions. It describes
interactions between quarks, which are mediated by gluons. QCD is asymptotically free theory,
which means that at quite high energies, the strength of interactions between quarks, i.e.
coupling constant, goes to zero. This allows one to use QCD in perturbative manner and
obtain sensible theoretical predictions. However, quarks are not observed as free particles in
Nature. This is due to the phenomenon, known as confinement. At low energies, quarks rather
form bound states, called hadrons.

One cannot describe interactions between hadrons with the help of QCD, since its coupling
constant becomes large. Therefore, the question arises, whether it is possible to construct some
effective field theory, which would replace QCD at low energies. The answer is follows.

In the chiral limit where the light up, down and strange quark masses go to zero, the QCD
Lagrangian has a SU(3)r x SU(3), chiral symmetry that is spontaneously broken to SU(3) g1
symmetry. The eight Goldstone bosons arise, that can be identified with the eight lightest
hadrons (mesons): the n’s, K’s and 1. Their interactions are described by an effective low
energy theory, called Chiral Perturbation Theory (ChPT).

ChPT contains all terms allowed by the symmetry of the QCD Lagrangian in the chiral
limit. At low momenta the chiral Lagrangian can be expanded in derivatives of the Goldstone
fields and in the masses of the three light quarks. ChPT is a nonrenormalizable theory in
usual sense. However, as long as one includes every possible interaction terms allowed by
symmetries, the nonrenormalizability is not a problem: the theory is renormalizable order by
order. ChPT can be used perturbatively, since every loop and the associated counterterm
correspond to successively higher powers of momenta or quark masses. Therefore, at low
energies, the contributions from higher loops are small.

Since some of the mesons are electrically charged, it is important to include electromagnetic
interactions in ChPT framework. The obtained theory (ChPT with virtual photons) is an
effective theory of QCD+QED.

Next we consider ChPT for mesons and virtual photons at one-loop (next-to-leading or-
der). Loops, in which mesons and photons run, produce ultraviolet divergences, which can be
absorbed by introducing additional counterterms. From the point of view of path integral for-
mulation, these divergences are contained in the so-called one-loop generating functional. The
counterterms in the Lagrangian contain the so-called low-energy constants (LECs), which are
also divergent. Choosing their divergent parts appropriately, we get finite generating functional
of ChPT at next-to-leading order.

Thus, one has to calculate the divergent part of the one-loop functional. This has already
been done in the literature. As it is known, after quantization of electromagnetic field, the
gauge fixing term appears in Lagrangian. It depends on a gauge parameter a. However, the

calculations were done in the Feynman gauge, where a = 1. In present thesis we extend the



evaluation of the divergent part of the one-loop functional to the case of arbitrary gauge. To
that end we use other method of calculation, since for a # 1, the differential operator in the
Lagrangian turns out to be of a so-called "non-minimal” type and the conventional heat-kernel
method is no more applicable. Further, we obtain the dependence of the S-functions of the
different low-energy constants on the gauge parameter. Then we check the validity of the result
and compare our S-functions with the (incomplete) results, available in the literature.

We think, that the present calculations provide a deeper insight on the low-energy effective
theory of QCD+QED. In addition, our results can be used for the extraction of the so-called
electromagnetic low-energy constants from the lattice QCD data, since the Feynman gauge is

not the most convenient one to perform lattice Monte-Carlo simulations.



2 Basics of Chiral Perturbation Theory

2.1 QCD and Chiral Symmetry

Quantum Chromodynamics (QCD) is the gauge theory of the strong interactions [1, 2, 3]. Its
gauge group is color SU(3) group. The matter fields of QCD are spin-half fermion particles,
called quarks with six different flavors in addition to their three possible colors.

Thus, the QCD Lagrangian can be obtained from the gauge principle and it reads
— /. 1 uv,a
Loca =Y qr(ilD—my)qs — ZGW’CLG e (1)
f

where summation is done over all six quark flavors. The quark field gy consists of a color triplet

and G, denotes gauge field strength tensor:
G,uz/,a - a,uGu,a - aqu,,a + gfach,u,bGu,ca

where G, , is gauge potential and g coupling constant between quarks and gauge fields (or, in
other words, gluons). The covariant derivative D,, has the form

8 )\C’
D, =0,—1g Z 7“G,w;
a=1

here \¢ are Gell-Mann matrices, which act in color space (C superscript shows it). The ex-
istence of only one coupling constant ¢ means that interaction between quarks and gluons is
independent of the quarks flavors.

There is no ordinary definition of quark mass, since quarks have not been observed as
asymptotically free states. Below are presented the values of current quark masses, which refer

to the masses of the quarks by themselves. They should be distinguished from the constituent

f u d s ¢ b t
mys, GeV | 0.005 | 0.009 | 0.175 | (1.15- 1.35) | (4.0 - 4.4) | 174

Table 1: Quark masses. The result is given for the MS running mass at scale p =1 GeV

quark masses of a non relativistic quark model which are typically of the order 350 MeV.
From this table we see, that at low energies (~1 GeV) one can omit effects due to heavy

quarks and therefore approximate the full QCD Lagrangian by its light-flavor version. Moreover,

because of smallness of light-flavor quark masses, one can consider the QCD Lagrangian in the

so-called chiral limit m,, mg, ms — 0 as a good first approximation

| 1 )
ESCd = Z @le qr — ZGMM@GZ . (2)

l=u,d,s



The Lagrangian Egcd has additional symmetry, called chiral symmetry. In order to see this,

let’s rewrite the Egcd in terms of left- and right-handed quark fields

1 1
qr = 5(1 + )0, qL = 5(1 — 75)4.

We obtain .
Ly = > (Gryillqry + QLiilp qr.) — EGW,CLGZZ’- (3)
l=u,d,s

Thus, the £, is invariant under the transformations

qr = Urqr, qv— ULqr,

where Uy, and Ug are independent unitary 3 x 3 matrices:

RA LA

8 8
UR = &Xp <_Z Z ®a ;) 67i9R7 UL = exXp <—Z Z @a ;) eiieL‘
a=l1 a=1

0

qca 1128 & classical

here the Gell-Mann matrices act in flavor space. Therefore, the Lagrangian £
global U(3), x U(3), symmetry.
According to Noether’s theorem, the consequence of this global symmetry is the existence

of conserved currents. Here we will write them down (see [4] for derivations):

a a

a — a — >\ — —
Vit = 7“3(1, Al =q7“753q, Vit =agytq, A" = qv"ysq

However, the singlet axial-vector current A, is no more conserved after quantization, because
of anomalies. Therefore, we are left with the invariance of the L), under global SU(3), x
SU(3), x U(1),, transformations.

We also introduce charge operators, which are defined as follows:

Q% (1) = / dr Voo (z),  Q%(t) = / dr A% (z), Qu(t) = / dz VO(x).

For conserved symmetry currents, these operators are time independent, i.e., they commute
with the QCD Hamiltonian H?

qed»
[Q(\thgcd] = [QCA7 chd] = [QV7chd] =0
They form the Lie algebra of SU(3), x SU(3), x U(1),, group [4]:

[Q(\lh Q(XZ/] - Zfach%ﬁ [Qih Q?él] - ifdbc@%/? [Q%/, Qi\] = ifachih

QY. Qv] = [Q%, Qv] =0,



where fu. are structure constants of SU(3) group. Thus, these charges can be used as generators
of SU(3), x SU(3), x U(1),.
In real world, the chiral symmetry is not exact, because quarks have nonzero masses. Adding

the mass term to the Lagrangian of QCD

Ly = —qMq
where
m, 0O 0
M = 0 mq 0
0 0 ms,

explicitly breaks the chiral symmetry and the corresponding currents are no more conserved.

Next we want to consider some important consequences of the symmetries in quantum field
theory, and particularly in QCD. In quantum field theory, we are interested in objects called
Green functions which are vacuum expectation values of time-ordered products. They are of a
great importance, because we can calculate any physical observable, if we know them. If theory
has some symmetries, then these symmetries put constraints on transformation behavior of
Green functions and also relate different Green functions. Such symmetry relations are known
as Ward-Takahashi identities. In particular, in QCD one considers the so called chiral Ward
identities, which relate the divergence of a Green function containing at least one factor of V#“
or A*® to some linear combination of other Green functions. The word chiral refers to the
underlying SU(3), x SU(3) group.

It turns out that the set of all chiral Ward identities is encoded as an invariance property of
the generating functional of the theory. More precisely, one introduces into the QCD Lagrangian
external c-number fields (sources, [5], [6]), which couple to the currents defined above (except

to the singlet-axial current):
_ 1 _ :
L= Loca + Lear = Laea+ (0" + 30() +750")q = d(s — isp)g. (4)

These external fields are color-neutral, Hermitian 3 x 3 matrices:

8\ 8 A\ 8 8
ot =Y Eavéﬂ a' =) Eaaﬁa s =2 AaSa, D= AP
a=0 a=0

a=1 a=1

Setting v = v(y, = a* = p = 0 and s = diag(m,, ma,m;) (s = 0), We obtain the usual three
flavor QCD Lagrangian (QCD Lagrangian in the chiral limit). Then, using the generating

functional
expliZ(v,a,s,p)] = (0;0ut|0;in), 4.5, = (0|7 exp {i/d%ﬁm(x)

— (0T exp (i [ dtoq@) o (@) + 50 (@)]  s(a) + i9sp(a) Ya() ) [0)

10)



(5)

one is able to obtain any Green function consisting of the time-ordered product of color-neutral,
Hermitian quadratic forms by taking functional derivatives with respect to the external fields
[4]. Now, in the absence of anomalies, the Ward identities obeyed by the Green functions are
equivalent to an invariance of the generating functional under a local transformation of the
external fields [7].

Requirement of the Lagrangian £ to be Hermitian and invariant under parity transformation
(P) and charge conjugation (C) leads to the following transformations of the external fields

under P and C operations:

vt ’5 U;m 'U’é) '5 UELS)a a '5 _a;u S '5 S, p '5 —D- (6)
UN E) —Ug, 'U/(f) 2} _UISS)T7 a’u g aga S, P g 8T7pT7 (7)

The Lagrangian £ can be rewritten in terms of the left- and right-handed quark fields:

1 1
€ = Gurar (b 3o o i)

—qr(s +ip)qr — qr(s — ip)qr, (8)
where
Ty =V, +au l,=uv,—a,

Equation (8) is invariant under the following local transformations of the quark fields and

external sources [4]:

qr — €exp (_Z@éx)> R(x)qr,
qr, > exp (—z@éx)> L(z)qr,
r, — Rr,R'+iRO,R',
l, — LI, L' +ilLo,L",
ULS) = U/(f) - 0,0,
s+ip — R(s+ip)LT,
s—ip + L(s—ip)R, (9)

where R(x) and L(z) are independent space-time-dependent SU(3) matrices. Thus, it is possible
to make the Lagrangian £ to be invariant under local SU(3), x SU(3) ; x U(1),, transformations.

The point is that one can consistently and systematically approximate the generating func-
tional Z(v,a,s,p) of QCD at low energies by generating functional of an effective field theory

with Lagrangian, that can always be brought to a manifestly locally chiral invariant form by



adding total derivatives and performing meson field redefinitions [7]. In particular, this will
allow one to study the low-energy behavior of the Green functions of QCD, which at the same
time will represent a solution of the Ward identities. The Chiral perturbation theory (ChPT)

is an example of such an effective theory.

2.2 ChPT as an effective field theory

At low energies, quarks due to confinement are bound (together with gluons) into particles
called hadrons. Proton, neutron, pion are examples of hadrons. We are interested to describe
interactions between them. We cannot use underlying QCD theory because there is no way to
use it in perturbative manner. Therefore, the question arises whether it is possible to construct
such an effective field theory which would replace QCD at low energies and at same time would
give a sensible theoretical predictions. It appears that it is possible. Namely, we know the
symmetry properties of strong interactions; therefore, we can write an effective field theory in
terms of the hadronic asymptotic states, and parametrize the unknown dynamical information
in a few coupling. However, we cannot simply compute the effective Lagrangian directly from
the original QCD Lagrangian. The connection between the original and effective theories is
non-perturbative.

The theoretical basis for construction of such effective field theories was provided in Ref.
[8] as a "theorem” (conjecture), which states that perturbative description in terms of the most
general effective Lagrangian containing all possible terms compatible with assumed symmetry
principles yields the most general S matrixz consistent with the fundamental principles of quan-
tum field theory and the assumed symmetry principles. The corresponding effective Lagrangian
will contain an infinite number of terms with an infinite number of free parameters.

Chiral perturbation theory (ChPT) provides a systematic method for discussing the conse-
quences of the global flavor symmetries of QCD at low energies by means of an effective field
theory. At quite low energies, the corresponding Lagrangian is expressed in terms of the lightest
hadrons states; these are members of pseudoscalar octet (7,7, 7% n, K+, K=, K° and K°).
Such effective field theory is called the ChPT for mesons. We note that it is also possible to
construct the ChPT for baryons (like protons and neutrons), but it is beyond the scope of this
thesis.

Before proceeding further, we have to consider one important property of QCD, which is
tightly connected to the construction of the ChPT for mesons. Namely, there is experimental
evidence that chiral symmetry of QCD is spontaneously broken. A continuous symmetry is said
to be spontaneously broken or hidden, if the ground state of the system is no longer invariant
under the full symmetry group of the Hamiltonian.

Previously, we have seen that the light-flavor QCD Lagrangian possess an SU(3), xSU(3) , X
U(1),, symmetry. This chiral symmetry is however not seen in the hadronic spectrum. Accord-

ing to experiment, degenerate multiplets with opposite (negative) parity do not exist. In con-



trast, hadrons can be nicely classified in SU(3) representations. The explanation is as follows.
As it was shown in Ref. [9], the ground state is necessarily invariant under SU(3),, x U(1),,

transformations, that is the charges Q¢ and @)y annihilate the ground state (vacuum):

Qv|0) = Qv[0) = 0.

According to Coleman’s theorem [10], if the vacuum is invariant under SU(3) x U(1),,, then
so is the Hamiltonian (but not vice versa). This further implies that the physical states of the
spectrum of the QCD Hamiltonian H, gcd can be organized according to irreducible representa-
tions of SU(3),, x U(1),,. The index V indicates that the generators transform with a positive
sign under parity. The U(1),, symmetry results in baryon number conservation and leads to
a classification of hadrons into mesons (B = 0) and baryons (B = 1). Then, since the parity
doubling is not observed for the low-lying states, one assumes that the Q)% do not annihilate

the ground state:
@4]0) # 0.

Thus, the SU(3), x SU(3), symmetry spontaneously breaks down to SU(3),,.

In accordance with Goldstone’s theorem [11, 12], to each axial generator )%, which does
not annihilate the ground state, corresponds a massless Goldstone boson field ¢*(x) with spin
0, whose symmetry properties are closely connected to the generator in question. In particular,

the Goldstone bosons are pseudoscalars, which means that they transform under parity as
¢a(t7 f) '£> _¢a(t7 _f) (10)
Also, they transform under the subgroup SU(3),, as an octet:

QY ¢ (2)] = ifuped(2)

Since there are eight broken axial generators of the chiral group, Q%, there should be eight
pseudoscalar Goldstone states, which we can identify with the eight lightest hadronic states
(m,m, K). The non-vanishing masses of the light pseudoscalars in the real world are related to
the explicit symmetry breaking in QCD due to the light quark masses.

Additionally, we would like to mention theoretical conditions for a spontaneous chiral sym-
metry breaking in QCD [4]. Firstly, a non-vanishing scalar quark condensate, which is the
quantity (0|gq|0) is a sufficient but not a necessary condition for a spontaneous chiral symme-
try breakdown in QCD:

(0]qq|0) # 0

Secondly, considering the nonzero matrix element of the axial-vector current between the vac-

uum and massless one particle states |¢°), which because of Lorentz covariance can be written



as
(0]A%(0)|¢"(p)) = ipuFod®,

one obtains that nonzero value of Fy (this constant will be introduced again later) is a necessary
and sufficient criterion for spontaneous chiral symmetry breaking.

Returning to ChPT, the basic assumption of ChPT is that the chiral limit constitutes a
realistic starting point for a systematic expansion in chiral symmetry breaking interactions. The
Goldstone nature of the pseudoscalar mesons implies strong constraints on their interactions.

Here we mention some essential properties of interactions between Goldstone bosons [13]:

e The Goldstone boson fields are derivatively coupled. Thus only gradients of fields appear

in the Lagrangian.

e The effective Lagrangian describes a theory of weakly interacting Goldstone bosons at
low energies. The Goldstone boson couplings are proportional to their momentum, and

so vanish for low-momentum Goldstone bosons.

e The Goldstone boson Lagrangian is non-linear in the Goldstone boson fields. It describes
the dynamics of fields constrained to live on the vacuum manifold, which is generically

curved.

The general formalism for effective Lagrangians for spontaneously broken symmetries was
worked out by Callan, Coleman, Wess and Zumino [14, 15] and is known as CCWZ formalism.
Following this formalism and applying it to QCD, the Goldstone fields are collected in a unitary

matrix field U(¢) transforming as
U(g) — RU(¢)L',  LeSU(3),, ReSU®B), (11)

under chiral rotations SU(3), x SU(3),. There are different parameterizations of U(¢) corre-
sponding to different choices of coordinates for the chiral coset space SU(3), x SU(3),/SU(3),,.

For convenience one chooses the matrix U(z) = U(¢(z)) to be the SU(3) matrix:

¢éﬁ§)> |

U(x) =exp (z
where

e V2t V2K

8
p(x) = ) Aatu(z) = V2r—  —n0+ %77 V2K° |, (12)
= VIK-  VERY -3y

Now, using the transformation law U +— RUL' one can construct the most general, chirally



invariant, effective Lagrangian; with the minimal number of derivatives it reads

2

F
Log = ZOTr (.u0mUt) (13)

where Fj =~ 93 MeV is a free parameter known as pion decay constant, which is related to the
pion decay 7" — ptv,. Expansion of U in a power series in the meson fields gives the right

kinetic term:

1
['cff = §a,u¢a(x)a“¢a('r> + /:'z'nty

where the interaction Lagrangian L;,; starts with interaction terms containing at least four
Goldstone bosons. If we perform the substitution ¢, (¢, Z) — —¢*(t, Z) for the Goldstone boson
fields, or equivalently, U(¢, %) — U'(t,7), in the Leg, then L.g doesn’t change. It means that
the L.g contains in it’s expansion only terms with even number of Goldstone boson fields. In
this case the Lagrangian Lg is of so-called even intrinsic parity. There also exists odd intrinsic
parity sector of the mesonic ChPT [16, 17|, but we are interested in even intrinsic parity sector
only.

However, as we saw, in real world the symmetry SU(3), x SU(3)j is not perfect, because

the QCD Lagrangian contains quark mass term
Ly =—qMq=—qrMqr — LM qp.

In order to incorporate the consequences of this fact into the effective-Lagrangian framework,
one makes use of the following argument [18]: even though M is in reality just a constant matrix

and does not transform along with the quark fields, £, would be invariant if M transformed as
M+ RML'.

One then constructs the most general Lagrangian, which is invariant under simultaneous trans-
formations U — RUL', M +— RML'. At lowest order in M one obtains

 FB,

Lo, Tr(MUT + UMT),

where the subscript s.b. refers to symmetry breaking. Here By is the new constant, which can

be related to the chiral quark condensate [4] as
3F; By = —(0]gq|0).

Substituting the quark-mass matrix M and expanding the L}, in power series in the meson

fields, one reads off the masses of the Goldstone bosons, to lowest order in the quark masses,

M? = 2Bym,

T

10



MIQ( = By(m +ms),

2
M; gBO (m + 2my) , (14)

where for the sake of simplicity m,, = mg = m is set. Using the relation By = —(0|gq|0)/(3F%2),
we see that quadratic masses of the Goldstone bosons linearly depend on the quark condensate
and the quark masses. The latter result is supported by the analysis of the data on K+ —
ntr~etv, [19][20], which means that the quark condensate really characterizes spontaneous

chiral symmetry breaking in QCD.

2.3 Effective Lagrangians in ChPT

As we have seen, the effective chiral Lagrangian contains infinite number of terms, which have
the same symmetry properties as underlying theory, i.e. QCD. In the ChPT, the most general
chiral Lagrangian describing the dynamics of the Goldstone bosons is organized as an infinite

sum of terms with an increasing number of derivatives and quark mass terms,
Eeﬁ:£2+£4+£6+..., (15)

where the subscripts refer to the order in a momentum and quark mass expansion. According to
formulas (14) and on-shell condition p? = M?, for consistency, one should count one quark-mass

term as being of the same order as two derivatives:
2
my ~ O(p7).

Therefore, the index 2 denotes either two derivatives or one quark mass term. Consequently,
the L contains terms of so-called chiral order O(p?). Analogously, £, denotes terms of chiral
order O(p*) with corresponding numbers of derivatives and quark mass terms etc.

Since we are interested in making sensible predictions using this effective Lagrangian, we
need some rule, which would tell us what diagrams one has to take into account when calculating
given physical matrix element with defined accuracy. Such a rule was given in Ref. [8] and
is known as Weinberg’s power counting scheme (or argument). It analyzes the behavior of a
given diagram under a linear rescaling of all the external momenta, and a quadratic rescaling

of the light quark masses (quadratic Goldstone boson masses):
pirtps,  mg s tPmy (M2 2 M?).
Let A(pi, my) to be the amplitude of a given diagram. After rescaling it takes the form

Altpi, t*my) = t° A(pi, my).-

11



The D is a number called the chiral dimension of a given diagram and is equal to

D:2+2L+i2(n—1)vgn, (16)
n=1

where V5,, denotes the number of vertices originating from Lo, and L is a number of independent
loops [4]. Going to small enough momenta and masses, such that the ¢ changes in the range
0 <t < 1, means that diagrams with small D, such as D = 2,4, should dominate. Moreover,
the given diagram with chiral dimension D is of chiral order O(p?). Thus, we conclude, that
in order to calculate a physical matrix element with a given finite accuracy, it is sufficient to

consider only finite number of diagrams.
Calculating loop graphs, we might expect, that a given amplitude is proportional to some
power of the expansion parameter p/A,, where A, is some typical hadronic scale. The loop

expansion suggests
Ay ~AmFy = 1.2 GeV

as a natural scale of the chiral expansion [21]. This parameter is large enough that one can
apply chiral Lagrangians to low energy processes involving pions and kaons. If it were just
Fy, then chiral effective Lagrangians would not be useful even for pions, since their mass is
approximately M, ~ 140 MeV, while Fj is 93 MeV. Restricting the domain of applicability of
ChPT to momenta |p| = O(Mg), where M ~ 500 MeV is kaon mass, the expansion parameter

is expected to be

M
= 0.18.
16m2F2
There is also improved estimate of A, [22, 23]
47TFO

A, ~
X \/ﬁf?
where Ny is the number of light flavors (N;=2, 3). It stems from the fact, that the greater Ny is,
the more number of mesons can run in loops. Therefore, one would expect considerably better
convergence of the chiral expansion in the SU(2), x SU(2), framework, because in this case
N¢ =2 and |p| = O(M,). Finally, one should also mention that the so-called chiral logarithms
emerge from the loops, so the convergence of the perturbative expansion is in fact slower than
can be concurred from the above "rule of the thumb”.
Next, in connection with mentioned at the end of subsection 1.1, we want to promote the
global symmetry of the effective Lagrangian L.g to a local one. Then, using this new locally
chiral invariant Lagrangian L.g, we can approximate the generating functional of QCD at low

energies by the generating functional, obtained with help of the effective field theory:

eichd[v,a,s,p} ~ eiZ[v,a,s,p] _ /[dU(¢)]eifd4w£EH7 (17)

12



where [dU(¢)]| denotes the measure of the functional integral.
In order to construct the effective chiral Lagrangian for a local G = SU(3), x SU(3)g
symmetry, one introduces the same external fields v,a,s and p as in QCD, and defines the

covariant derivative d,A for any object transforming as A — RALT:
dyA=0,A—ir,A+iAl, d,Aw R(d,A)L"
It transforms in the same way as the object A. Also, the following combinations are defined:
X = 2Bo(s +ip),

Ry, = 0,1, — Oyry —ilry, ], Ly = 0ul, — 0,1, —i[l,, 1],

where R, and L,, are the field strength tensors associated with the r, and [,, correspondingly.

Introduced expressions can be used as the building blocks for construction of the locally chiral

’ element \ G \ C \ P ‘
U RULY Ut Ut
dy, -+ dy, U | Rdy, - -dMULT (dy, - 'd)\nU)T (d)\l .. d’\nU)T
X RyL' X" X!
dy, --dyx | Ry, - dy XL | (dy, ---da, )T | (@ - d*y)T
T Rr,R" +iR0, R —L, Iz
L, LZMLT + Z’LE)MLT —’I’Z r#
R, RR,, R — (L)t L
L,, LLWLT —(RW)T R+

Table 2: Transformation properties of the building blocks under the group (G), charge conjugation (C),
and parity (P). The expressions for adjoint matrices are obtained by taking the Hermitian conjugate

of each entry.

invariant effective Lagrangian. In Table 2 are presented the transformation properties of all
building blocks under the group (G), charge conjugation (C), and parity (P).

In the chiral counting scheme of ChPT the elements for consistency should be counted as:
U=0(1), D,U=0(), 1, =0®), Ru, L =0, x = 0. (18)

and any additional covariant derivative counts as O(p). Using this counting rule and Table 2
for the building blocks, we can construct the most general, Lorentz, C, P and locally-invariant

effective Lagrangian at lowest chiral order O(p?) [4, 5, 6]; it is of the form

Fy no o t f
Loy = ZTr[duU(d“U) |+ ZTr[xU + Ux']. (19)

13



The Lagrangian L5 can be written as
F2
Loy = Z()(duUd“UT + XU+ UxY),

where it assumed that (...) = Tr[...] and d*UT = (d*U)'. Substituting the scalar density s

expansion around the quark-mass matrix
s=M++...

in Lo, we obtain the same relations for meson masses (14), which justify the chiral counting
rule (18).

In the same way it is possible to construct the most general Lagrangian at next-to-leading
order, i.e. at chiral order O(p*) [5]. Tt reads

Ly = L{dU'd"U)*+ Ly(d, U'd,U)(d"U'd"U)
+L3{d, UTd"Ud,Utd"U) + Ly(d, UTd"U)(x'U + xU")
+Ls(d,UTd"U(X'U + U'X)) + Le(x'U + xU")* + Lz (x'U — xU')?
+Ls(XTUXTU + xUUT) — i Lo(R"d, Ud, U + L*d,U"d,U)
+L1o(UTR™ U L,,) + Hi{R R*™ + L, L") + Hy(Xx) . (20)

and satisfies local chiral invariance, Lorentz invariance, P and C. We see that while at lead-
ing order one needs two constants Fy, By to determine the low-energy behavior of the Green
functions, at next-to-leading order it is necessary 10 additional low-energy coupling constants
Ly, ..., Ly (the terms Hy, Hy are of no physical relevance, since they contain only external
fields).

As one can see, the Lagrangian £, contains terms which are not presented in £,. This is the
general feature of effective field theories, which are non-renormalizable in a usual sense like QED
or QCD. However, ChPT Lagrangian L.g is the most general chiral invariant Lagrangian, and
since the divergences can be absorbed by local counterterms that exhibit the same symmetries
as the initial Lagrangian [24], it automatically includes all terms needed for renormalization to
every order in the loop expansion.

Consider one-loop diagrams generated by the £,. They are of order O(p?), since according
to Eq. (16), L = 1 for D = 4. Using dimensional regularization, which preserves symmetries
of theory, in particular chiral symmetry, one finds that the counter terms necessary to absorb
divergences produced by the one-loop diagrams, have the structure of the terms presented in
the next-to-leading order Lagrangian £4. Therefore the one-loop divergences can be eliminated
by an appropriate renormalization of the low-energy constants L; and H;. Later, in connection

with our thesis problem, we will consider this more precisely.
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3 Virtual photons in ChPT

3.1 Effective Lagrangian at O(p*)

In real world, the pseudoscalar mesons not only have masses, but some of them, for example
7w, KT are also electrically charged particles. Therefore it is necessary to include electromag-
netic interactions between them in ChPT framework. To that end, consider the Lagrangian

term, which is responsible for the interaction of quarks to the electromagnetic field:
Lom = —qQAq = —qrQAN" qr — 1QAN L,

where A, is the electromagnetic field potential and @ is the quark charge matrix

2 0 0

e
Q_§ 0 -1 0
0 0 -1

If we introduce the so called spurion fields Qg(x), Qr(z) and rewrite Lqp, as follows

Lom = —qrQrA N qr — 11.QL AN 1,
then L, will be locally chiral invariant, if the spurions transform under SU(3); x SU(3)x as
Qr(z) = RQr(2)R', Qr(z)— LQr(x)L'. (21)
Additionally, it is possible the following modification of the covariant derivative d,U:
d,U=0,U—iR,U+iUL,,

with
R,=v,+a,+A,Qr, L,=v,—a,+AQr.

In order to save the previously introduced power counting scheme one puts

Qr, QL =0(p), Ay =0(1).

Using the spurions Qg(x), Qr(z) as additional building blocks and the counting rule for
them, one can construct the most general Lagrangian, which includes electromagnetic interac-
tions and which is consistent with the chiral symmetry, P and C' invariance. One then sets the

spurion fields to the constant charge matrix Q:

Qr(r) =QL(z) = Q.
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At leading order, i.e. at chiral order O(p?), it reads [26, 27|

F2 1
£ = Z“<d#U+dMU XU A UX) = JFF,

(04, + CLQRUQLU™), (22)

where F,, = 0,A, — 0,A, is the electromagnetic field strength tensor, a is the gauge fixing
parameter and C'is the new constant, which determines the purely electromagnetic part of the

masses of the charged pions and kaons in the chiral limit,

M2 = M3, = 262% + O(my)

The Lagrangian (22) generates one-loop graphs consisting of meson and photon lines. They
are of order O(p*) and contain divergences, which should be absorbed by adding tree graphs,
evaluated with the next-to-leading order Lagrangian Ele). Consider loop expansion from the
point of view of path integral formulation of quantum field theory. The generating functional
of ChPT (17) reads, up to and including terms of order O(p*)

' p 4y (Q) (Q)
ezZ[v,a,s,p} _ /[dU] [dAu]e fd {52 +L, }’ (23)

where [dA,] means the path integral measure for electromagnetic field. One should calculate
Zv,a, s,p| at one-loop level. To this purpose, we note that the classical field theory associated
with a given Lagrangian is equivalent to the set of tree graphs of the corresponding quantum
field theory. Thus if we use the classical field equations to evaluate Z[v, a, s, p|, then Z[v, a, s, p|
generates Green functions at tree approximation (leading order) [29, 30].

Since the vertices of the Lagrangian Ele) only occur in tree graphs, the contribution from
Ele) to the generating functional can be calculated by evaluating the action [ dx Ele) at the
classical solution of the equations of motion. Therefore the most general Lagrangian at O(p?)
can be simplified with the help of the equations of motion.

The next-to-leading order Lagrangian in the presence of virtual photons was constructed
in Ref. [27]. Additional building blocks with their transformation properties are presented in
Table 3. The quantities ¢fQr, ¢;Qr are defined as

] element \ G \ C ‘ P ‘
Qr RQRrR! QL Qr
HQr | RfQrRT | (ckQp)" | <™Qy
Qr LQL Qp Qr
cyQr | LefQuLl | (fQr)" | ™Qr

Table 3: Transformation properties of the additional building blocks under the group (G), charge
conjugation (C), and parity (P).
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chQr = 0,Qr — i[1,, Q1] I'=RL.

They transform under SU(3)g x SU(3), in the same way as Qr and Q. Since one further sets
Qr = Q1 = @ = const, so ci@ = —i[l,, Q]. The Lagrangian .cff’?) has the following form:

LY = L+ FH{K(d"UTdUNQ) + Ka(d"U"d,U)(QUQU™)
+R((A"UTQU)(d, U QU) 4+ (d"UQU ) (d, UQU™))
+ K, (d" U QU UQU™Y + K5 ((d"U*d, U + d"Ud,U")Q?)
+Ke(d"Utd,UQU*QU + d*"Ud, U QUQU™)
HE (XU +UTX)NQ%) + Ks(x"U + UM x)(QUQU™)
+Ko{((xUT + Uxt + xTU + Ut x)Q?)
+E (XU +UxHQUQU™ + (x*U + UTx)QUTQU)
+E (XU = Ux")QUQU™ + (x'U — UT\)QUQU)
+K1o(d, UT [cRQ, QU + d, U Q, QIUT)
+K13(rQUcr,QUT) + K14(cpQcr,Q + 1 Qcr,Q)}
+FR{K15(QUQU™)? + Ki6(QUQU)(Q?) + Ki17(Q%)?}, (24)

where it is supposed, that U = U, A, = A, are classical solutions, which are determined by the

equations of motion,
_ _ _ _ _ 1 - _
d,d"UU* — Ud,d"U* + Uyt —xU* — g<U><+ —U™)
40 - T+ T+
+F—02 (UQU Q- QUQU ) = 0,
2 1 Av ZF02 rrir7+
{gwa _ (1 _ a) auay} A+ S84, 0107,Q)) = 0. (25)

The Lagrangian £,: comes from the strong sector and is given by Eq. (20).
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3.2 Generating functional at one-loop

The generating functional of Eq. (23) becomes
eiZ[v,a,s,p] — eifd‘lxlfiQ) /[dU] [dA#]eifd4:p£éQ)

To evaluate the one-loop graphs produced by the Lagrangian /ng), we expand the fields
U(z), A,(x) in the neighborhood of the classical solutions U, A, [32]:

i€/ £ 18
U = ueg/ou:u<1+zFU—2FO2+--->u
— 1 1 5
= U+f0u£u—2—F02u§u+...
A, = Au—l—eu, (26)

where U = u? and € is a traceless hermitian matrix, £ = 3, £°\% Then we substitute this
expansion in the action S = [ dxﬁéQ) and keep only terms, quadratic in the fluctuations &, €.
As a result we obtain [27, 31]

IR
S = / drl® - - / dena DAy,

where the fluctuations are collected in a new flavour space elements 14 = (£4,€,) = (&1, ..., &s,
€, - - -, €3) and matrix D is the differential operator defined as follows:
D = Dy+3, (27)

Do a25ab 0 (28)
b 0 =g+ (1-L)oror )

§(x) = {Y,, 0"} +Y,Y*+A, (29)

with

mm):(rzb Xﬁp), A<x>:( 7 ‘57”). (30)

ng 0 _%,Yab _pgap
The elements of these matrices are given by the expressions:

LY = =5 (N0,

1
2
Q, a a a 1 a

Xy = Xpr= X000, XU =~ (HLY),

ab __ 1 a I 1 a FU2 a
o = S{[Aw NAN) £ (X N o) — 2 (HAT (HL)
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o ([ Hy, N Hi — Hy X a5 )}

82
1
Y= = FO<([HR7 AP + 2DpHL> ),
3
p = g 02<H[2,>7 (31)

where

D,H, = 0,H,+[l',, Hy]
1 1 _ 1 -
r, = §[u+, d,ul — iiquR“u - §uL#u+,

1 _ 1 _
A, = iqudﬂUuJr = —§uduU+u,
HR = U+QRU+UQLU+,

Hy, = u"Qru—uQru’,
1
o = §(u+xu+ +ux ). (32)

The generating functional thus takes the form
: Q) Q) ,
R L Y PRy —

The remaining path integral over fluctuations reduces to a Gaussian integral and we finally

obtain Z[v,a, s, p|] at one-loop:
Zv,a,s,p| = /d:z:ﬁ_éQ) + /da:ﬁ_fl@ + %ln det D, (33)

where all quantities are to be evaluated at the classical solutions U(z), A,(z). The determinant
of the operator D requires renormalization, since it contains divergences of one-loop graphs
with arbitrary number of external legs. These divergences may be absorbed by an appropriate

renormalization of the low-energy coupling constants in the Lagrangian E_ELQ) of Eq. (24):

where )\ is defined as

d—4
A=t {;4 _ ;[111(4@ L) + 1]}

with d denoting the number of space-time dimensions. The renormalized constants L[ (u), H (1),
K () are finite and depend on the scale p introduced by dimensional regularization. The coef-

ficients I';, A;, X; are some numbers, which has to be chosen in such a way, that the generating
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functional (33) is finite. The resulting Z[v, a, s, p] generates the general solution of the Ward
identities at next-to-leading order.

We see that in order to determine the coefficients I';, A;, ¥; we need to regularize the
determinant of the operator D. Thus, we have to separate out the divergent part of the one-

loop generating functional

Zone toop = %m det D.

There exists the so-called heat kernel method [33], which allows to calculate the divergent part
of the Indet D. However, this method can be applied (at least, without modifications) only to
the differential operators of so-called minimal kind. The operator D is nonminimal in general.
It becomes minimal when the gauge parameter is set to 1: @ = 1 (Feynman gauge). This is the
case considered in Ref. [27]. Using the heat kernel method for the operator D, one obtains the
divergent part of the one-loop functional [5, 27]:

. 11 1 L1 ,
Zonelloop =657 1 /d4x Sp <12YWY“ + 2A2) -+ finite parts, (35)
where Sp means the trace in the flavour space n* and Y,,, denotes the field strength tensor of
Y,,

Yo=0Y,—0Y,+[Y,Y.]

One then can find the coefficients T';, A;, ¥;. The coefficients T';,; A; are listed in Ref. [6], and
Y, in Ref. [27].
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3.3 [-functions in arbitrary gauge

We are now in a position to state the main aim of the present thesis. As we have already

mentioned, the coefficients ¥;, or alternatively the S-functions, defined from Eq. (34) as

dKi(p) 1
dp  16m2

ﬁi =H Ei?

were calculated in Feynman gauge a = 1. We extend the evaluation of ¥; to the case of the

arbitrary gauge and formulate the problem:

Calculate the coefficients »; for

the arbitrary gauge parameter a.

3.3.1 Description of the method

In order to solve this problem, we chose another method of calculation of the divergent part of
the one-loop functional Zope100p [9; 28]. We expand the determinant of D of Eq. (27) in powers
of the operator ¢ :

Zonetoop = %m det(Dy + 6) = %m det Dy + %Tr(Dgld)

(4

—Tx(D;'5D5"6) + éTr(DgléDgldDglé)

—éTr(DgléDgléDgléDglé) + finite parts, (36)

where trace Tr denotes, in coordinate space, the integral Tr{...} = [dx(x|Sp{...}|x). We
have written out only terms, which contain the ultraviolet divergences. In momentum space
at large momenta the matrix element of the operator Dy is proportional to 1/k?, while the

matrix element of the operator ¢ is proportional to k. Each trace in the sum at large momenta

1
kno

are only traces presented in Eq. (36). We checked that in case of the minimal operator D, the

is proportional to the integral [ d*k-i., which is divergent only for n < 4. Therefore, divergent

expansion (36) leads to the same divergent part of Eq. (35), obtained by the heat kernel method
(this was done in the strong sector, without virtual photons). Below we will use dimensional
regularization as a convenient one.

To perform the calculations in the arbitrary gauge we at first explicitly expand the traces

in the flavor space n. For the first trace we have:
Sp{ D50} = (D5'6)4 = (D5 )an(0)™ + (D5 1)p(6)",

where we used the fact that (Dy')a, = (Dy')ss = 0. Inserting necessary number of completeness
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relation in coordinate space [ dz|z)(x| = 1, we obtain

Te(Dy'0) = /dwdy {2105 asly) (W1(8)" ) + (2 (Dg )oply) (y1(6)7 1) }

The matrix elements of the operators D' and ¢ have the following form:

(#(DgHly) = 0°A(z —y),
(|(Dy")™y) = —g" Az —y) + A" (z —y),
Wl(6)*Plzy = 2v P (y)okd(x —y) + P (y)d(x —y), (37)

where

ddk e—ik:(x—y)

Alx—y) = /< o

2m)?
Ma—y) = (=1 [ <gﬁ]§d e,
c(r) = (O Y")+Y,YF+ A (38)

Using Eq. (37), we separate the divergent terms, that depend on the gauge parameter (through
A, ()), and hereby obtain for Tr(Dy'0):

Te(Dy'8) = Te(D5'8)~" + [ dudyd,,(z — y) (4] (9)"a),

where Tr(Dj'6)%=! means the trace, which is calculated in Feynman gauge. We note, that since

Y 7P(x) = 0, then the matrix element of the operator ¢ simplifies to

Wl(0)7|z) = " (y)d(x — y). (39)

This fact considerably reduces the number of divergent integrals, that one has to evaluate.
Substituting the expression (39), partially integrating over the coordinate y and then taking

integral over x, we get
Te(D;'6) = Te(D; 0"~ + [ dy A,y (0)e” (y).

The quantity A,,(0), which is the integral in momentum space, is zero in dimensional regular-

ization,

Ak kok, / Ak 1
(

dk o
/WUCQ)M =0, foranym; A,,(0)=(a— 1)/ o) ki 2

Thus, Tr(Dy'6) = Tr(D,"0)*=!. We perform the same steps for other traces in the expansion

(36). Details are provided in appendix B. The divergent part of the one-loop functional in the
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arbitrary gauge is given by the expression

) o 1 1
dZUZone loop — d“}Z(,nelloop + ZFOQ(l - a)m /dI{<[HL, AM]2> - <[HR7 A#]2>
3 1
HHE0) = 2([Ha A,JG") = (GuG") = SF{Z(Ha+ Hu He— HiP) ) (40

where div means divergent part, Z = C'/F;} and G* is defined as
G* = utchQu — udi Qut.

3.3.2 Three flavour case

Next, with help of Eq. (32), we simplify the result:
(Hi D) — ([Hr, A2 = —(@ 0+ d,0QU+QU + d*Td, T+ QUQU™) + 2(Qd, T Qd"T™),
(Hio) = S0 + Ox* 4 X0+ 0 0@
ST+ DX )QUQU™ + (U + U )QU* QU
([ A GH) = —i(duU+ Q. QU + d, 010, Q)T
(LT HQUQ + 4UQUQ +d,04QUQ + U QUAQ),
<GuG“> = <C}IL%QCRHQ + ClLLQCLuQ> - 2<CIIL%QUCLALQU+>7
((HrR+ Hp, Hr — HL]?) = 32(QUQUQUQU* — Q*UQ*U™). (41)

The second trace in the expression for ((Hg, A,|G*") can be transformed, using partial integra-

tion and the equation of motion, obeyed by U [34]. We obtain
(d,UTRQUQ + d,UQUTchQ + d,UctQUYQ + d,UTQULQ) =
(d"U*d,UQUTQU + d*Ud, UTQUQU™") — 2(Qd,UQd"U™")
1 _ _ _ _ _ _ _
+5((UT = UxNQUQU™ + (XU = U )QU™QU)
HAFZZ(QUQUTQUQUY — Q*UQ*U™). (42)

Thus, the final result for divZone 100p 1S

. o 1
0 oo = 000y = 50—y (1~ W [ o]

1 .
1<(><U+ +UxT +xTU + U )Q?)

_zll<(xU+ +UXNQUQUT + (x"U+ U )QUQU)
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PO = UX)QUQU™ + (T ~ T X)QU*QU)
45 (@0 14Q. QU +d,T1¢4Q,QIU) + 1 {hQUeL,QU)
2 (chQemQ + Qe Q) ) (13)
If we write the coefficients >; as
¥ =X 4+ 5,

where $¢=! are ones calculated in Feynman gauge, then ¢ can be directly read off from Eq.
(43). They are presented in Table 4.

i ] x| 5
1 0 2
2 0 zZ
3 0 -3
4 0 27
5 0 —2
6 0 57
7 0 0
8 0 Z
9 | 11— —1a
10| —=3(1—a) 27+ 1a
11| 1(1— 3 -a)
12| 3(1— (3 —a)
13] 31— 3(1—a)
14| -3(1-a)| —-21-a)
15 0 24+3Z+1427
16 0 —3-3z-27?
17 0 S—3Z+527

24

Table 4: The coefficients ¥; and their gauge dependent parts L.



3.4 Discussion of the result

Next, we would like to discuss the validity of the result. First, we checked, whether the parts
2 introduce the dependence of the physical quantities on the renormalization scale p. From
physical point of view, they should be independent of u. We considered the masses of pions,
kaons and eta meson, calculated at one-loop level with virtual photons included [27]. The

expressions for them contain the following combinations of the renormalized constants K7 (u):

Cy = 6K +6K}+5K! +5K; — 6KL — 15K — 5K} — 23K7, — 18K,

Cy, = K

Cs = 12K} + 12K} — 18K} + 9K} + 10K7 + 10K} — 12K7 — 12K} — 10K} — 10K7,,

Cy = 3Kj+ K+ Kjy,

Cs = 6K+ 6K, +5K! +5K] — 6KI — 24K} — 2K} — 20K], — 18K7,,

Cs = 3K|+3K,+ Kl + K} — 3K. — 3K}, — Kj — KJ,,

C: = K+ K],

Cs = 12K +12K5 — 6K} + 3K} + 6K + 6K; — 12K7 — 12K5 — 4Ky — 4K7,.  (44)

Acting by the operator ,ui on both sides, we get the [-functions, or equivalently the ¥;
coefficients, on the right-hand sides. Using Table 4, we see that the quantities M%Ci still remain
equal to zero, as they should. We also considered the amplitude of process 7= K+ — 7K [35].
There are combinations of first six K in its expression. According to Table 4, M%Ci are zero

for them. Another combinations are

Cy = 9(M?+2Mp)Kg — M2K) + (1TM? + 18 M) K}, + 18(M? + M) K7,
Cio = K+ K;+12K; —6K],— 6K,
Cn = 18Kj — 9K — 12K} + 2Kj — 34K}, — 36K7,. (45)

They are scale independent as well. We cannot check the gauge invariance of physical quantities,
since the expressions for renormalized constants K (u) may contain parts, that do not depend
on g, but can in general depend on the gauge parameter [36].

In addition, we considered the relations between three- and two-flavour low-energy constants
[37] and applied our result to them. It turns out that the scale-dependent part of the matching
condition between SU(2) and SU(3) LECs is gauge-independent, as it should. Details are
provided by D. Agadjanov in his thesis, in which two-flavour case is considered.

We would like to mention other approach, which was used to study the gauge dependence
of constants K7 (u) with ¢ = 1,...,14 [36, 38]. Our result is in agreement with the findings of
Refs. [36, 38]. We also mention Ref. [39], in which the author provides the expression for the
divergent part of the one-loop functional for operators of non-minimal kind. The expression

given in that paper is not suited for a direct application to ChPT.
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4 Conclusion

In present thesis we calculated the one-loop generating functional for mesons and virtual pho-
tons in case of arbitrary gauge. The problem was that the usual heat kernel method cannot
be applied. Therefore, we chose another method, which allowed to solve the problem. Then
we evaluated the S-functions of the electromagnetic low-energy constants. After that, we con-
sidered different checks on our result. To that end, we checked, if the S-functions introduce
the dependence of the physical quantities on renormalization scale. We took the masses of
pions, kaons, eta meson and amplitude of 7~ K+ — 7°KY process. In all these cases we found
scale independence, as it should. We also checked the relations between three- and two-flavour
[S-functions. They were all valid. Further, we compared our g-functions with ones, obtained
by another method and concluded that they coincide.

In future, we plan to study the gauge dependence of the scale-independent parts of the
constants K] (u). We also plan to consider the problem in context of lattice QCD calculation

of the low-energy constants.
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Appendices

A Integrals

In this appendix we collect the divergent parts of necessary integrals, that are needed during

the calculations with help of dimensional regularization. We note that d = 4 — 2e.

1
om)d [ — 2kp + m?2]*  2T(3) 1672

d i 1
/( 5 b " +1p.,

dp pHpYp 1 i N . N
/<2W)d = 2kp+mIE (@) Tenzed N TR F TR+

/ddp prptpp? 1
(

Lo oo Moy A N

1
+g TR+ g R = 2 (m® =) [g" g™ + ¢ g™ + g”g“”]} +f.p.,

dd LoV oA 0 1
/ ( e = " g + g"g” + g" ") + £.p.,

2m)d [p2 — 2kp +m2)4  4I'(4) 1671'26[

dip  p'p'prpPp° L Voo ov | wp o
/ ( = (" 97" + g"° g™ + g9 )k

2m)e [p2 — 2kp +m2]*  4T'(4) 1672
+(g" g7 + ¢ g7 + g g + (9" 97 + Mg + g g R

+(g" 9" + g + g g7 K + (¢ g + ¢ ™ + 97" )KT] + £ p.,

?: vV O oV 12 g €
= (9" g + g"*g°" + g"*g"") g

/ d'p  pp'p ey 1
(2m) [p? — 2kp +m?2)>  8I'(5) 1672

+(g" g™ + g" g7 + ¢ ") g + (697 + 99 + g™ g ) g

+(g” gPU _|_ng9 _'_g)\PgUV)g/Mf + <g,ul/g,0>\ + g,u)\gpl/ + gu)\g,up)go'e] + fp,

/ d'p pUp"ppp kRS 1 i [
(2m) [p2 — 2kp +m2]6  16T°(6) 1672e

(9" 97" + ¢ 9" + 6" g"") (9" g™ + g™ g7 + g*g™)

H(g" g7 + "7 + g ") (g 9"+ 9797 + g g™)
Hg" 97+ g9 + 99N (9 g+ g™ g+ g™ g™)
+H(g9" + 979+ ) (g g+ g™ g+ g g
+(g" g + 9" + 97 g)

(
( a,B oe aagﬁﬁ 046 /BU

)
)
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+ gaagﬁp+gﬁagap ( ;U/ €A usguA
+ geogap+gaa €p ;U/ ,B)\ ,uﬁ 1/)\

)

(9 g
g7 g% + 6P ) (g g + gh g +
)
(
(

~—  ~—

9

(
(
(
(9
+(9%g +gg)
(9 9%)
(9
(9
(

+(g% g™ + g™ g?)

B Calculation of traces

Below, we present the details of calculations.

B.1 Tr(D,'6D,"6)

We expand the second trace:

g*’g* + g"g” + g

aX BV 6)\ av (g,upg _i_guegpa_'_g,ucr I/E)
gupgﬂa + g#B gpo + guchVB)

uagua)

oAghr 4 gm (g g% + 9”7 g") + (g g™ + g™ ™) (9" 9" + "7 g"")
+(g?g™" + g™g E“)(g” 9°7 +¢"7g") + (¢*"g" + g7 g™ ) (g™ g% + g™ ")
(69" + g7 ¢"") + (¢ ¢" + ¢°"9%) (9" g°" + ¢*"g**)] + . p.

Sp{Dg 0D 0} = (D5 ")an(8)"(D5 " )ea(d)™ + 2(Dg a(0)*7 (D5 ) (0)
(Do e (0)(Dg ) (0)" (B.1)

Analogously, we separate the divergent terms, that depend on the gauge parameter (through
A, (z)), and hereby obtain for Tr(Dy 6Dy "'6):

Tr(Dy 0D, ') = Tr(Dy'6Dy'o)*="

+2 / drdydzdu Ax —y)Aop(z — u)(y|(0)*]2) (ul (0)**|x)
~290p / drdydzdu Az — y) A (2 = u)(y[(6)|2) (u|(0)"|z)

+ / drdydzdu Ay, (x — y) A (z — ) (y|(0)™]2) (u](6)"7|z)
= Tr(Dy'6Dy'6)*=" +2I + 2K + L, (B.2)

Thus, it is necessary to find the divergent parts of the integrals I, K, L. The integral I is

I = /dxdydzdu Az —y)Asp(z —

u)[2Y,(y)06(y — 2) + c(y)o(y — 2)]*7

x[2Y, (u)0ld(u — x) + c(u)d(u — x)]P*

= /d?/du [—2Y, ()0l A(u — y) + b(y) A(u — )] X
X[=2Y, (u)0; Aop(y — u) + b(u)Aop(y — w)]” = L + Ly + I3 + I, (B.3)

30



where the following matrix is introduced:
b(z) =Y, Y*+A—(0,Y"). (B.4)
as well as notations for the integrals:

o= 4 [ dydu Y ()Y () Iy,

o= =2 [dydu Y )y (),
Iy = =2 [dydu Y V),
/ dydu b ()b (u) L1, (B.5)

with

I = 0yA(u—y)0 A% (y — ),
I = 0yA(u—y)A7(y — u),
I = A(u—y)0A™(y — u),
I = Alu—y)A”(y —u). (B.6)

The Lorentz indices are raised and lowered by the metric tensor g"”. With the help of Eq.(38)

we write the integrals (B.6) in momentum space. For the first integral we have

d d V.o
Jrver (a N 1) dky d°ky kl kl k?kg e—i(kg—kl)(u—y)‘
' (2m)4 (2m)* kik3

Introducing new integration variables

(k1. ko) = (k1,p) 1 p= kg — Fy,

with the transformation Jacobian J = 1 and Feynman parametrization, the integral 11" takes
the form :
d’p
I"er — (g — 1 / e—@p(u—y)Ferﬂ7
1 ( ) (27T)d 1

where

d V1.0 L.P V1.0 L.P LM
Fiver _ 2'/dx/dy/dkl kYRS KT p* + kY kS kUK '
k2 +2(1 — 2)(kap) + p*(1 — )]

Here and below we use the values of integrals, presented in appendix A; we obtain F{"”:

vo 1 1 1 - o 5 e . .
= 121671'26{ Rt I i e U U I Ul U s U e b U

1
_4[9,11«1/90'{7+gungV+nggJu]}_l_f.p. (B?)
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Then, integrating over the momenta p with help of the formulas

dp d?
/(2 )dp pu —luy) = _35855@_9)7 /(27T]))dp26_2p(u ¥) = _626( )7

we get I1"?? and consequently I, which reads

L =—-2(a-1) /de“@zXa—i—f p.,

167T €

where the result for I; was simplified by summation over Lorentz indices and the use of property
of the matrix Y,: Y7 = Y7 = X?)7; the quantity X* is defined in Eq. (31). In the same

manner we calculate the divergent parts of the other integrals in Eq. (B.6). We obtain

L = —(a— /d X0 + f.p.,
9 2(a 167re rX0,b" +f.p.
I; = —(a— 1)1 oy /dxX‘I@Ub‘w—i-f.p.,
1 ao a
I = —fla=1) 16”2 /dxggpb b 4 £ p. (B.8)

The values of integrals from appendix A as well as the following additional formula were used:

dd
[ o = =)

The final expression for the integral I = I; + I + I3 + I; can be reduced to a more simple one,

if we replace b by b7*. As it follows from the definition of the matrix b(x),
b7 = 07" — 20"Y]7 = b7 — 207 X“.
Therefore, we get
I= 1 L d 2bP*0, X ! e §
= —(a- )167T26 T pt 4970 D
The second integral K with help of the Eq. (39), takes the form

K = —g,, / drdydzdu Az — y)A,, (2 — uw)c™ (y)e” (w)d(y — 2)0(u — x)

= —goy | dydu Alu = )2, (y — W (5)e” (u). (B.9)

To calculate its divergent part we write

ddk k,ﬂkl/
K™ =" = —2!(a—1)/ e y)/ d:v/ dy/ 1 3
(2m)d k2—|—2 (1 —z)(kip) + p*(1 — )]
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Then,

1 7/ vo
K= Z(a_ 1)m/diﬂguyggpcp“(:n)c (x) +f.p.

The matrix element ¢ is
= —(p+ X*X")g"

and thus we obtain

K=(a—-1) /d:ch—i—XaX“) +f.p.

162

The last integral L can be written as

L= /dydu ™ (y)e” () Lo pps

where
Lo = A7 — ) Ay — u)
We have
Lo — (a _ 1)2/ d p e~ p(u—y) popuv
(2m)< ’
with

Foprv

_ / dky kYKL (K] + p7) (KD + p)
— ] @) 5 (ky + p)t

ddk‘l k“k:”k"kp
:3'/da:/d/dz/ +f.p. (B.10
y V5200 = g)(kap) + 21— gt P (B10)

Taking the divergent part of the integral in momentum space we get L7PH:

1
Lo = orla—1)° (9" 977 + g"°9" + g"g"*16(u — y) + . p.

7
1672¢
The integral L becomes

1

L=—
24<

a—1)° 16 — /dm P+ XX Gumg0olg" 97" + 99" + g"7g"] + L. p.

L=(a—1)? /dl‘p—i—X“X“) +f.p.

162

Thus, the divergent part of the second trace is

divTr(Dy'6Dy'o) = divTr(Dy o Dyt 6)*=

_ _ L __9ppa a 1 oa pa}
2(a 1)1%26/6@{ 270, X" + g0,
+{2(a—1) + (a - 1)%} 16 L /dw p+ X9X9)?2, (B.11)
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where div means the divergent part.

B.2 Tr(D,'sD,'s§D,'))
Next we consider the third trace Tr(Dy 6Dy 6 Dy'6). We have:
Sp(Dg 005" 0D5"6) = (Dg )an(8)"(D5 1 )ea(d)™(Dg e (9)
0

+3(Dg )av(0)" (D5 )ea(8)* (D ap(8)" + (D ap(8)" (D )3 (6)" (Dg s (8)"
+(Dy)ep ()" (D () (Dg e (0) (B.12)

We omit the last term, since it produces finite integral, due to Eq. (39). Then,

Tr(Dy oDy 6Dy tS) — Te(Dy oDy 6Dy t6) =" = 3M + 3N +f.p.

= 3/dxdydzdtdudv A — y)A(z — 1) Ay, (u — v) {y|(5)™]2) (¢ (6)"7 [u) (v](§)7*|x)

+3 / dadydzdtdudo {—A(z — y) A, (z — AW — 0)gop — A(x — Y)apA(z — ) A(u — v)gru
FAg (= y) A (2 = 1) A(u — ) Hyl(8)2]2) (t](6)"“[u) (v (5)*7 |z) + £. p. (B.13)

The integral M is of the form

M = /dydtdv [—2Yu(y)8l‘jA(v —y) + b(y)A(v — y)]“b X
X [—2Y,(t)0y A(y —t) + b(t) Ay — t)]b"[—ZYA(v)é?;\AUp(t — ) + b(v) Ay, (t —v)]*

= M, + My + My + M, +f.p., (B.14)
where
My = =8 [ dydtdv Y ()Y (0Y{" (0) Mt
My = 4 [ dydtdv Y ()Y 2 ()0 (v) M,
My = 4 [ dydtdo Y, ()2 ()b ()M,
My = 4 [ dydtdo Y (YL ()" () M, (B.15)
with

MP7P = 9RA (v — )0V Aly — DONA(t — v),
MY7P = OFA(v —y)Or Ay — t)ATP(t — v),
ME"P = OA(v = y)Aly — 1), A (t — v),
MO = Ao — g)OFA(y — DAL — ). (B.16)
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To calculate the divergent part of M!*??_ we write

d'ky d%ky dks k5k5k§k§k§e_wq@—yquxy—ﬂ—wgu—w

(2m)d (2m)d (2m)d K22k (B.17)

M = ia—1) [
Then we similarly introduce the new integration variables:
(k1Ko k3) = (g, k) p=Fki— ks, q= ko — ks, k= ks,
with Jacobian J = 1, and obtain

ddp ddq

o A
eP(y—v)+ig(t y)Gll“’ Upj

MIP — 3(q — 1) /

where

Ak HEY kA RO kP VERENT KPR + EPEVEMRC R + f.p.
;,Ll/>\0'p — 3l / dl’/ d’y/ dZ/ p +4q + 2 2+ p .
R 4 2k[p(z — y) + q(1 — )] + p(z — y + ¢*(1 — 2))]

After integrations, we obtain

1 2 1
Gul/)\ap: - —{(3ph — gt v\ po vp Ap oV
] 11620 (B3P — a9 + 97" Ak gMg7)

+(3¢" = P)(g"97" + g" 9 + gV g") — (0N + )G+ "9 + g )
—(" + ) g g7+ g+ §9) = (07 + ) g g + g g+ g g} + .

Then, integrating over p, g according to the formulas

dp l ”U . ddq v _iq(t— A%
/ e = —idys(y — ) / ad e =053 ),

we get M!"?°. After summation over Lorentz indices and performing of the necessary integra-

tions, the divergent part of M; reads

My, =2(a — 1) /dyabxa nxh 4 f
1=2(a 167r2 o X"+ 1Lp.

The integral M5"7"is

d%p di
(2m)® (2m)

ezp(y—v)Jrzq(t—y)GleUP’

Myt = 2o - 1) [

where

ddk’ k“k”k"k”
Glor — 3'/ d:v/ dy/ dz/ ]4—|—f.p.
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Thus,

1 7
M,uuap _ = 1
2 24 (a ) 1672¢

(9" 97" + g"" 9" + g"7g""]o(y — v)d(t —y) +f.p.

We note that the other integrals M4{?? MJ"’” have the same divergent part. Therefore, we
get

1
1672e

X[9" gop + 000 + 046y +£.p., (B.18)

1
My+ My+ My = —2la— 1) [ do [VOV200 + VOV + ¥yt x

_ 1 i ab yvb/1pa ap ab ya yvb
M2+M3+M4——6(a—1)m/d:c{6}/p XO(b7 4+ ) — 246X X"} 4 £,

The integral N, taking into account Eq. (39), can be written as

N:N1+N2+N3+fp,

where

Ni = =4 [ dydtdv go,c™ ()Y (Y2 (0) N,

No = =4 [ dydtdv gy, () V2 (V" (0) N3,

Ny = 4 [ dydtdv )Y (Y (0) N, (B.19)
with

NP = Ao = y)dy AN (y — I A(t — v),
Ny™ = A%(v = y)oy Aly — )0, At — v),
NGPARE = AP (y — ) AM (y — )OEA(t — v). (B.20)
The integrals NY**, N2’ have the same divergent part as M. Thus,

1

Ny = —ila= D)o g 00" + 979" + ¢"g" 1y — v)(t — y) + f.p.,
ogpre ]' Z g ve vo € g€ v
N = —gla= 1) aesl97 9 + 979" + 979"y —v)é(t —y) + Lo (B.21)

Substituting P YAy = (p+ X2X*) X Xb¢P 167, we obtain

l

1672¢

N+ N =8(a—1) /d:c(p 4 XOXY)XUXE 4 fp.
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The integral N§***¢ is of the form

ddp ddq ip(y—v)+ig(t— TPUNE
eP(y—v)+ig(t y)GBP ne

N??py/\m = (a— 1)2) (2m)d (2)d

where

d O L. AL LV L€
Gapl//\ue 4'/ df]f/ dy/ dZ/ du/dkkkkkkk—}—fp

iE
Using the value of the integral in appendix A and then noting that
IoGJoelg" 97" g™ + perm.] = 192
we get N3, which reads

Ny = 4(a — 1)? /dx P+ XOXYXP X 4 £.p.

16 1672e
Thus, the divergent part of Tr(D; 0D, 0Dy"6) is

divTr(Dy 0Dy 0Dy 6) = divTr(Dy ' Dy oDyt 6)*=!

+6(a Yo Xeorx®

1 i ab yb(1pa ap ab ya yvb
—i(a—l)m/d:ﬂ{&/ X(b +57) — 24b XX}
+{24(a— 1) +12(a — 1)} 16 . /dmp+X“X“)XbXb (B.22)

B.3 Tr(D,'sD,'6D,'6D,"6)
Finally, we calculate the divergent part of Tr(Dy 6Dy 6Dy 6 Dy'6). We have:

Sp(DaléDaléDaléDalé):<D01> ()bc(D_l)cd@ Dg)es(0)9(D5 1) gr(9)*
)

~—
U

g

—

+2(D51)an(8)*(Dy e (8)7(Dp ! )ef((?)”(Dal)AM)““ +1f.p, (B.23)
where we omitted terms, that produce finite integrals. Then

Tr(Dy'6 Dy 6Dy 6Dyt S) — Tr(Dy ' Dy 0Dy 0Dy 1 6)*=! = 4P + 2Q + f. p.
=4 / drdydzdtdudvdrds {A(z — y)A(z — ) A(u — v) A, ,(r — s) X
X (yl(8)™[2) (E1(8)" ) (v (6)7 |r) (s](6)** |} }
+2 / drdydzdtdudvdrds {—A(z — y)A(z — ) A(u — v) A, (1 — 5)Gop
—Az = y)Asp(z = 1) A(u = v)A(r = s)gau + Az = ) Agp(z = ) A(u — v) Ay (r — s)} x
X (yl(8)7[2) (t1(6)”[u) (v](8)"|r) {s1(8)"*|x) + . p. (B.24)
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The integral P is of the form
= 16/dydtdvds Y)Y ()Y (0)YF(s) Pl + £.p.,

where

prriesp _ A (s —y)oy Aly — At — v)OSAT (v — ).

The integral P***<°? can be written as

P,uu)\ecrp —

(a_1> ddkl ddk? ddk?’ ddk:4 k}f/{?;k{}k’ikik}z —ik1 (s—y)—ike(y—t)—iks(t—v)—iks(v—s)
(2m)® (2m)4 (2m)¢ (2m)*  Kk3K3k ’

Introducing the new integration variables
(kv Koy ks, ka) = (p, K q,r) 0 p=Fky— ko, q=ks — ko, 7 =Fky — k3, k = ky,

with Jacobian J = 1, we get

d d d
p,ul/)\eop _ _(a _ 1) d p d q d'r eip(yfs)+iq(sft)+ir(sfv)H,uw\eo’p
(2m)4 (2m)? (27)4

where

dk ok,p )\k,u V€
JJHvAeap _ 4‘/ dm/ dy/ dz/ du/ ' K7k7h k]B +f.p.

The latter integral has the same divergent part as G5**¢. Thus,

1 !

HVAETP

1
8T'(5) 1672€ 24 579" 97 g™ + perm]é(y — $)d(s — )3(s — v) +L.p.

Substituting Y ?Y/* = —X*X){4? and noting that

Jorgpelgd" g7 g + perm.| = 48g"",

we obtain

P=4(a—1) / dg™ Y Y XIXC 4 f.
(a 167r2 g +thp

We write the second integral @) as

Q=Q1+Q:+Qs+f.p,

where

Qi = 16 [ dydtdvds gosYi () V(Y (0)YP*(5)QT50 + .-
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Q = —16 / dydtdvds gas Y, (y) Y10 ()Y, (0)Y(s)Q55: + f.p.,

Qs = 16 / dydtduds Y2 (y) YA (1) Y (0) Y1 () Q5oer, + £ -, (B.25)

with

TN = 97 A(s — y) O Aly — LAt — v)ISAM (v — s),
QM = 0IA(s — y)OP AN (y — 1)L A(t — v)IEA (v — s),
QPN — P A(s — y)IRATy — DAA(E — v AN (v — s). (B.26)
The integrals QJ”“™, Q37 have the same divergent part as H**°?_ Since
Gop9rGnelg™ 9779 + perm] =192, guegaoguplg™ 979" + perm.] = 192,

we obtain

Qi+ Q2 = 32(a— D7y [ daX"X“X"X" + £.p.
o€

The third integral Q3°7"™ is

d%p d%q dir
2m)4 (2m)e (2m)@

N N N
6zp(y s)+iq(s—t)+ir(s v)ngﬁopzxe ,LL7

QN = (a1 [

where

ddk ko‘kﬁk"kpk”k%’\k“
Haﬁapz/ez\u 5|/ dm/ dy/ dz/ du/ dU/ 24 ]6 +f.p

Performing necessary integrations, we get

;1 i1

afopreu _ 1
@ (@ = 16 1672 120

[gaﬁg‘“’ggpg “+ perm.|o(y — s)d(s — t)d(s — v) +f.p.

Then we substitute Y;"Yé’be)‘Y;“a = XX X" X"37050,0". Since

GoadpsIrwIuclg™’ 9" g°° g™ + perm.] = 1920,

we obtain

Z’ a a
Qs = 16(a — 1)2m/dsz XOXPXP 1 f.p.

Hereby, the divergent part of Tr(D, 6Dy 6 Dy 6Dy '6) reads

divTr(Dy 0Dy 0Dy 6 Dy'6) = divTy(Dy ' 0Dy 6 Dyt o Dy t6) =
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7
1672€

+{64(a — 1) +32(a - 1)*}

+16(a — 1) / dg™ Y Y Xo Xe
i
1672¢

/ dr X XXX (B.27)

B.4 Summation over flavour indices

Thus, the divergent part of the one-loop functional in the arbitrary gauge is given by the

expression
. . a=1 1 1 pa a 1 oappa
div Zone oop = VL5 100p + 5(1 - a)m /dm {—25 0pX* + Zgapb b
F2V X XD — VX (0 4 b7) + 4P X XD — 4g" Y Y X X } (B.28)
1 1
2 ayva\2 aya byb avyaybybd
+{2a—1)+(a—1) }167T2€/dx{4(p—|—X X2~ 2(p+ XX XOX? 44X X X0 X }

For simplification of the result, we have to sum over flavor indices. This is done with help of

the formula, which follows from the completeness relation for the generators A* of SU(NV):

SO(AN)(BAY) = 2(AB) — ;<A><B>. (B.29)

a

We further set Qr = Qr = Q. Since H;, = (Qr — Q) = (@ — Q) =0,
F? F?
XX = 1—%<HLAG><HLA“> = %(Hﬁ)

Then, p+ X*X? = %FOQ(H% and the second integral in Eq. (B.28) is equal to zero:

1 11 1
s XX —2(p+ X X)XXP 44X X X" X" = (16 -5 16) F2(H?) =0.

From the definition of the matrix b it follows that

D= XPOTHO AP QXY B b = 2(X AT 4 AP,

b = TUTH 44X X" + A — 9T (B.30)
Then,
AP XX — 4g Y X X = 4X“X”{;( (A, AY[A% N]) + i({)f‘, A\}o)
_8%(<[HR+HL,V][HR—HL,A”] +aHb>)} (B.31)
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The matrix element 0°* can be written as
1
- —§F0<([HR, APl 4+ DPHp) \Y),
since XAPTwbe — — L[ (A*[I, Hy]). Using Eq. (B.29), we obtain:

U0, X = L FOuHL([Hr, O] + D)),
o = SFR{([H 8,0 + Do) (Hi ) + DV L)),
T X0 X" = — R OMHL T, H),
T XU T = — CF3(0%, [T, Hal),
I XPAP = iFOQ([FM, Hip) ([HR, AM] + ;D“HL)%
XX (20, NIAR N = P ([ A, )[H, A,
XXX No) = SR (o),
XOXP(([Hp + Hy, N [Hp — Hy Y]+ 0 < b)) = ;Fg([HR + Hy, H— HyP) (B.32)
We also note that D, Hj, can be written as
D,H; = [Hg, A#] + Gy,
where
G* = utchQu — uch Qu™.

After substitution of these formulas into Eq. (B.28), the divergent part of the one-loop func-

tional takes the form

. o 1 1

d“}Zone loop — dzvzonelloop + Z 02(1 - Cl) 1671'26 /d${<[HL? A#]2> - <[HR7 A#]2>
3 1

+(HE0) = 2(Ha, AJG") = S(GLGY) — SF3Z((Hr + Hy, Hr — HL]2>}, (B.33)

where Z = C/Fy.
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