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Abstract

At low energies, the effective field theory of Quantum Chromodynamics and Quantum Elec-

trodynamics (QCD+QED), called Chiral Perturbation Theory for mesons and virtual photons,

allows to evaluate physical quantities in perturbative manner. In present thesis, the divergent

part of the corresponding one-loop generating functional is calculated in case of an arbitrary

covariant gauge. These calculations provide a deeper insight on the low-energy effective the-

ory of QCD+QED. The β-functions in the three-flavour case are obtained. The independence

of various physical quantities on the renormalization scale is verified. Comparison of the β-

functions with the ones given in the literature is made. The obtained results might be used for

the extraction of the low-energy constants from the lattice QCD data.
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1 Introduction

Quantum Chromodynamics (QCD) is regarded as a theory of strong interactions. It describes

interactions between quarks, which are mediated by gluons. QCD is asymptotically free theory,

which means that at quite high energies, the strength of interactions between quarks, i.e.

coupling constant, goes to zero. This allows one to use QCD in perturbative manner and

obtain sensible theoretical predictions. However, quarks are not observed as free particles in

Nature. This is due to the phenomenon, known as confinement. At low energies, quarks rather

form bound states, called hadrons.

One cannot describe interactions between hadrons with the help of QCD, since its coupling

constant becomes large. Therefore, the question arises, whether it is possible to construct some

effective field theory, which would replace QCD at low energies. The answer is follows.

In the chiral limit where the light up, down and strange quark masses go to zero, the QCD

Lagrangian has a SU(3)R× SU(3)L chiral symmetry that is spontaneously broken to SU(3)R+L

symmetry. The eight Goldstone bosons arise, that can be identified with the eight lightest

hadrons (mesons): the π’s, K’s and η. Their interactions are described by an effective low

energy theory, called Chiral Perturbation Theory (ChPT).

ChPT contains all terms allowed by the symmetry of the QCD Lagrangian in the chiral

limit. At low momenta the chiral Lagrangian can be expanded in derivatives of the Goldstone

fields and in the masses of the three light quarks. ChPT is a nonrenormalizable theory in

usual sense. However, as long as one includes every possible interaction terms allowed by

symmetries, the nonrenormalizability is not a problem: the theory is renormalizable order by

order. ChPT can be used perturbatively, since every loop and the associated counterterm

correspond to successively higher powers of momenta or quark masses. Therefore, at low

energies, the contributions from higher loops are small.

Since some of the mesons are electrically charged, it is important to include electromagnetic

interactions in ChPT framework. The obtained theory (ChPT with virtual photons) is an

effective theory of QCD+QED.

Next we consider ChPT for mesons and virtual photons at one-loop (next-to-leading or-

der). Loops, in which mesons and photons run, produce ultraviolet divergences, which can be

absorbed by introducing additional counterterms. From the point of view of path integral for-

mulation, these divergences are contained in the so-called one-loop generating functional. The

counterterms in the Lagrangian contain the so-called low-energy constants (LECs), which are

also divergent. Choosing their divergent parts appropriately, we get finite generating functional

of ChPT at next-to-leading order.

Thus, one has to calculate the divergent part of the one-loop functional. This has already

been done in the literature. As it is known, after quantization of electromagnetic field, the

gauge fixing term appears in Lagrangian. It depends on a gauge parameter a. However, the

calculations were done in the Feynman gauge, where a = 1. In present thesis we extend the
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evaluation of the divergent part of the one-loop functional to the case of arbitrary gauge. To

that end we use other method of calculation, since for a 6= 1, the differential operator in the

Lagrangian turns out to be of a so-called ”non-minimal” type and the conventional heat-kernel

method is no more applicable. Further, we obtain the dependence of the β-functions of the

different low-energy constants on the gauge parameter. Then we check the validity of the result

and compare our β-functions with the (incomplete) results, available in the literature.

We think, that the present calculations provide a deeper insight on the low-energy effective

theory of QCD+QED. In addition, our results can be used for the extraction of the so-called

electromagnetic low-energy constants from the lattice QCD data, since the Feynman gauge is

not the most convenient one to perform lattice Monte-Carlo simulations.
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2 Basics of Chiral Perturbation Theory

2.1 QCD and Chiral Symmetry

Quantum Chromodynamics (QCD) is the gauge theory of the strong interactions [1, 2, 3]. Its

gauge group is color SU(3) group. The matter fields of QCD are spin-half fermion particles,

called quarks with six different flavors in addition to their three possible colors.

Thus, the QCD Lagrangian can be obtained from the gauge principle and it reads

Lqcd =
∑
f

q̄f (iD/−mf )qf −
1

4
Gµν,aG

µν,a, (1)

where summation is done over all six quark flavors. The quark field qf consists of a color triplet

and Gµν,a denotes gauge field strength tensor:

Gµν,a = ∂µGν,a − ∂νGµ,a + gfabcGµ,bGν,c,

where Gµ,a is gauge potential and g coupling constant between quarks and gauge fields (or, in

other words, gluons). The covariant derivative Dµ has the form

Dµ = ∂µ − ig
8∑

a=1

λCa
2
Gµ,a;

here λCa are Gell-Mann matrices, which act in color space (C superscript shows it). The ex-

istence of only one coupling constant g means that interaction between quarks and gluons is

independent of the quarks flavors.

There is no ordinary definition of quark mass, since quarks have not been observed as

asymptotically free states. Below are presented the values of current quark masses, which refer

to the masses of the quarks by themselves. They should be distinguished from the constituent

f u d s c b t
mf , GeV 0.005 0.009 0.175 (1.15 - 1.35) (4.0 - 4.4) 174

Table 1: Quark masses. The result is given for the MS running mass at scale µ =1 GeV

quark masses of a non relativistic quark model which are typically of the order 350 MeV.

From this table we see, that at low energies (∼1 GeV) one can omit effects due to heavy

quarks and therefore approximate the full QCD Lagrangian by its light-flavor version. Moreover,

because of smallness of light-flavor quark masses, one can consider the QCD Lagrangian in the

so-called chiral limit mu,md,ms → 0 as a good first approximation

L0
qcd =

∑
l=u,d,s

q̄liD/ ql −
1

4
Gµν,aG

µν
a . (2)
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The Lagrangian L0
qcd has additional symmetry, called chiral symmetry. In order to see this,

let’s rewrite the L0
qcd in terms of left- and right-handed quark fields

qR =
1

2
(1 + γ5)q, qL =

1

2
(1− γ5)q.

We obtain

L0
qcd =

∑
l=u,d,s

(q̄R,liD/ qR,l + q̄L,liD/ qL,l)−
1

4
Gµν,aG

µν
a . (3)

Thus, the L0
qcd is invariant under the transformations

qR 7→ URqR, qL 7→ ULqL,

where UL and UR are independent unitary 3× 3 matrices:

UR = exp

(
−i

8∑
a=1

ΘR
a

λa
2

)
e−iΘ

R

, UL = exp

(
−i

8∑
a=1

ΘL
a

λa
2

)
e−iΘ

L

;

here the Gell-Mann matrices act in flavor space. Therefore, the Lagrangian L0
qcd has a classical

global U(3)L × U(3)R symmetry.

According to Noether’s theorem, the consequence of this global symmetry is the existence

of conserved currents. Here we will write them down (see [4] for derivations):

V µ,a = q̄γµ
λa

2
q, Aµ,a = q̄γµγ5

λa

2
q, V µ = q̄γµq, Aµ = q̄γµγ5q

However, the singlet axial-vector current Aµ is no more conserved after quantization, because

of anomalies. Therefore, we are left with the invariance of the L0
qcd under global SU(3)L ×

SU(3)R × U(1)V transformations.

We also introduce charge operators, which are defined as follows:

Qa
V (t) =

∫
dx V 0,a(x), Qa

A(t) =
∫
dxA0,a(x), QV (t) =

∫
dx V 0(x).

For conserved symmetry currents, these operators are time independent, i.e., they commute

with the QCD Hamiltonian H0
qcd,

[Qa
V , H

0
qcd] = [Qa

A, H
0
qcd] = [QV , H

0
qcd] = 0

They form the Lie algebra of SU(3)L × SU(3)R × U(1)V group [4]:

[Qa
V , Q

a
V ] = ifabcQ

c
V , [Qa

A, Q
a
A] = ifabcQ

c
V , [Qa

V , Q
a
A] = ifabcQ

c
A,

[Qa
V , QV ] = [Qa

A, QV ] = 0,
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where fabc are structure constants of SU(3) group. Thus, these charges can be used as generators

of SU(3)L × SU(3)R × U(1)V .

In real world, the chiral symmetry is not exact, because quarks have nonzero masses. Adding

the mass term to the Lagrangian of QCD

LM = −q̄Mq

where

M =


mu 0 0

0 md 0

0 0 ms


explicitly breaks the chiral symmetry and the corresponding currents are no more conserved.

Next we want to consider some important consequences of the symmetries in quantum field

theory, and particularly in QCD. In quantum field theory, we are interested in objects called

Green functions which are vacuum expectation values of time-ordered products. They are of a

great importance, because we can calculate any physical observable, if we know them. If theory

has some symmetries, then these symmetries put constraints on transformation behavior of

Green functions and also relate different Green functions. Such symmetry relations are known

as Ward-Takahashi identities. In particular, in QCD one considers the so called chiral Ward

identities, which relate the divergence of a Green function containing at least one factor of V µ,a

or Aµ,a to some linear combination of other Green functions. The word chiral refers to the

underlying SU(3)L × SU(3)R group.

It turns out that the set of all chiral Ward identities is encoded as an invariance property of

the generating functional of the theory. More precisely, one introduces into the QCD Lagrangian

external c-number fields (sources, [5], [6]), which couple to the currents defined above (except

to the singlet-axial current):

L = L0
qcd + Lext = L0

qcd + q̄γµ(vµ +
1

3
vµ(s) + γ5a

µ)q − q̄(s− iγ5p)q. (4)

These external fields are color-neutral, Hermitian 3× 3 matrices:

vµ =
8∑

a=1

λa
2
vµa , aµ =

8∑
a=1

λa
2
aµa , s =

8∑
a=0

λasa, p =
8∑

a=0

λapa.

Setting vµ = vµ(s) = aµ = p = 0 and s = diag(mu,md,ms) (s = 0), we obtain the usual three

flavor QCD Lagrangian (QCD Lagrangian in the chiral limit). Then, using the generating

functional

exp[iZ(v, a, s, p)] = 〈0; out|0; in〉v,a,s,p = 〈0|T exp
[
i
∫
d4xLext(x)

]
|0〉

= 〈0|T exp
(
i
∫
d4xq̄(x){γµ[vµ(x) + γ5a

µ(x)]− s(x) + iγ5p(x)}q(x)
)
|0〉,
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(5)

one is able to obtain any Green function consisting of the time-ordered product of color-neutral,

Hermitian quadratic forms by taking functional derivatives with respect to the external fields

[4]. Now, in the absence of anomalies, the Ward identities obeyed by the Green functions are

equivalent to an invariance of the generating functional under a local transformation of the

external fields [7].

Requirement of the Lagrangian L to be Hermitian and invariant under parity transformation

(P) and charge conjugation (C) leads to the following transformations of the external fields

under P and C operations:

vµ
P7→ vµ, vµ(s)

P7→ v(s)
µ , aµ

P7→ −aµ, s
P7→ s, p

P7→ −p. (6)

vµ
C→ −vTµ , v(s)

µ
C→ −v(s)T

µ , aµ
C→ aTµ , s, p

C→ sT , pT , (7)

The Lagrangian L can be rewritten in terms of the left- and right-handed quark fields:

L = L0
qcd + q̄Lγ

µ
(
lµ +

1

3
v(s)
µ

)
qL + q̄Rγ

µ
(
rµ +

1

3
v(s)
µ

)
qR

−q̄R(s+ ip)qL − q̄L(s− ip)qR, (8)

where

rµ = vµ + aµ, lµ = vµ − aµ.

Equation (8) is invariant under the following local transformations of the quark fields and

external sources [4]:

qR 7→ exp

(
−iΘ(x)

3

)
R(x)qR,

qL 7→ exp

(
−iΘ(x)

3

)
L(x)qL,

rµ 7→ RrµR
† + iR∂µR

†,

lµ 7→ LlµL
† + iL∂µL

†,

v(s)
µ 7→ v(s)

µ − ∂µΘ,

s+ ip 7→ R(s+ ip)L†,

s− ip 7→ L(s− ip)R†, (9)

where R(x) and L(x) are independent space-time-dependent SU(3) matrices. Thus, it is possible

to make the Lagrangian L to be invariant under local SU(3)L×SU(3)R×U(1)V transformations.

The point is that one can consistently and systematically approximate the generating func-

tional Z(v, a, s, p) of QCD at low energies by generating functional of an effective field theory

with Lagrangian, that can always be brought to a manifestly locally chiral invariant form by
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adding total derivatives and performing meson field redefinitions [7]. In particular, this will

allow one to study the low-energy behavior of the Green functions of QCD, which at the same

time will represent a solution of the Ward identities. The Chiral perturbation theory (ChPT)

is an example of such an effective theory.

2.2 ChPT as an effective field theory

At low energies, quarks due to confinement are bound (together with gluons) into particles

called hadrons. Proton, neutron, pion are examples of hadrons. We are interested to describe

interactions between them. We cannot use underlying QCD theory because there is no way to

use it in perturbative manner. Therefore, the question arises whether it is possible to construct

such an effective field theory which would replace QCD at low energies and at same time would

give a sensible theoretical predictions. It appears that it is possible. Namely, we know the

symmetry properties of strong interactions; therefore, we can write an effective field theory in

terms of the hadronic asymptotic states, and parametrize the unknown dynamical information

in a few coupling. However, we cannot simply compute the effective Lagrangian directly from

the original QCD Lagrangian. The connection between the original and effective theories is

non-perturbative.

The theoretical basis for construction of such effective field theories was provided in Ref.

[8] as a ”theorem” (conjecture), which states that perturbative description in terms of the most

general effective Lagrangian containing all possible terms compatible with assumed symmetry

principles yields the most general S matrix consistent with the fundamental principles of quan-

tum field theory and the assumed symmetry principles. The corresponding effective Lagrangian

will contain an infinite number of terms with an infinite number of free parameters.

Chiral perturbation theory (ChPT) provides a systematic method for discussing the conse-

quences of the global flavor symmetries of QCD at low energies by means of an effective field

theory.At quite low energies, the corresponding Lagrangian is expressed in terms of the lightest

hadrons states; these are members of pseudoscalar octet (π+, π−, π0, η,K+, K−, K0 and K̄0).

Such effective field theory is called the ChPT for mesons. We note that it is also possible to

construct the ChPT for baryons (like protons and neutrons), but it is beyond the scope of this

thesis.

Before proceeding further, we have to consider one important property of QCD, which is

tightly connected to the construction of the ChPT for mesons. Namely, there is experimental

evidence that chiral symmetry of QCD is spontaneously broken. A continuous symmetry is said

to be spontaneously broken or hidden, if the ground state of the system is no longer invariant

under the full symmetry group of the Hamiltonian.

Previously, we have seen that the light-flavor QCD Lagrangian possess an SU(3)L×SU(3)R×
U(1)V symmetry. This chiral symmetry is however not seen in the hadronic spectrum. Accord-

ing to experiment, degenerate multiplets with opposite (negative) parity do not exist. In con-
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trast, hadrons can be nicely classified in SU(3) representations. The explanation is as follows.

As it was shown in Ref. [9], the ground state is necessarily invariant under SU(3)V ×U(1)V
transformations, that is the charges Qa

V and QV annihilate the ground state (vacuum):

Qa
V |0〉 = QV |0〉 = 0.

According to Coleman’s theorem [10], if the vacuum is invariant under SU(3) × U(1)V , then

so is the Hamiltonian (but not vice versa). This further implies that the physical states of the

spectrum of the QCD Hamiltonian H0
qcd can be organized according to irreducible representa-

tions of SU(3)V ×U(1)V . The index V indicates that the generators transform with a positive

sign under parity. The U(1)V symmetry results in baryon number conservation and leads to

a classification of hadrons into mesons (B = 0) and baryons (B = 1). Then, since the parity

doubling is not observed for the low-lying states, one assumes that the Qa
A do not annihilate

the ground state:

Qa
A|0〉 6= 0.

Thus, the SU(3)L × SU(3)R symmetry spontaneously breaks down to SU(3)V .

In accordance with Goldstone’s theorem [11, 12], to each axial generator Qa
A, which does

not annihilate the ground state, corresponds a massless Goldstone boson field φa(x) with spin

0, whose symmetry properties are closely connected to the generator in question. In particular,

the Goldstone bosons are pseudoscalars, which means that they transform under parity as

φa(t, ~x)
P7→ −φa(t,−~x) (10)

Also, they transform under the subgroup SU(3)V as an octet:

[Qa
V , φ

b(x)] = ifabcφ
c(x)

Since there are eight broken axial generators of the chiral group, Qa
A, there should be eight

pseudoscalar Goldstone states, which we can identify with the eight lightest hadronic states

(π, η,K). The non-vanishing masses of the light pseudoscalars in the real world are related to

the explicit symmetry breaking in QCD due to the light quark masses.

Additionally, we would like to mention theoretical conditions for a spontaneous chiral sym-

metry breaking in QCD [4]. Firstly, a non-vanishing scalar quark condensate, which is the

quantity 〈0|q̄q|0〉 is a sufficient but not a necessary condition for a spontaneous chiral symme-

try breakdown in QCD:

〈0|q̄q|0〉 6= 0

Secondly, considering the nonzero matrix element of the axial-vector current between the vac-

uum and massless one particle states |φb〉, which because of Lorentz covariance can be written
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as

〈0|Aaµ(0)|φb(p)〉 = ipµF0δ
ab,

one obtains that nonzero value of F0 (this constant will be introduced again later) is a necessary

and sufficient criterion for spontaneous chiral symmetry breaking.

Returning to ChPT, the basic assumption of ChPT is that the chiral limit constitutes a

realistic starting point for a systematic expansion in chiral symmetry breaking interactions. The

Goldstone nature of the pseudoscalar mesons implies strong constraints on their interactions.

Here we mention some essential properties of interactions between Goldstone bosons [13]:

• The Goldstone boson fields are derivatively coupled. Thus only gradients of fields appear

in the Lagrangian.

• The effective Lagrangian describes a theory of weakly interacting Goldstone bosons at

low energies. The Goldstone boson couplings are proportional to their momentum, and

so vanish for low-momentum Goldstone bosons.

• The Goldstone boson Lagrangian is non-linear in the Goldstone boson fields. It describes

the dynamics of fields constrained to live on the vacuum manifold, which is generically

curved.

The general formalism for effective Lagrangians for spontaneously broken symmetries was

worked out by Callan, Coleman, Wess and Zumino [14, 15] and is known as CCWZ formalism.

Following this formalism and applying it to QCD, the Goldstone fields are collected in a unitary

matrix field U(φ) transforming as

U(φ) 7→ RU(φ)L†, L ∈ SU(3)L, R ∈ SU(3)R (11)

under chiral rotations SU(3)L × SU(3)R. There are different parameterizations of U(φ) corre-

sponding to different choices of coordinates for the chiral coset space SU(3)L×SU(3)R/SU(3)V .

For convenience one chooses the matrix U(x) ≡ U(φ(x)) to be the SU(3) matrix:

U(x) = exp

(
i
φ(x)

F0

)
,

where

φ(x) =
8∑

a=1

λaφa(x) ≡


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η

 . (12)

Now, using the transformation law U 7→ RUL† one can construct the most general, chirally
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invariant, effective Lagrangian; with the minimal number of derivatives it reads

Leff =
F 2

0

4
Tr
(
∂µU∂

µU †
)
, (13)

where F0 ≈ 93 MeV is a free parameter known as pion decay constant, which is related to the

pion decay π+ → µ+νµ. Expansion of U in a power series in the meson fields gives the right

kinetic term:

Leff =
1

2
∂µφa(x)∂µφa(x) + Lint,

where the interaction Lagrangian Lint starts with interaction terms containing at least four

Goldstone bosons. If we perform the substitution φa(t, ~x) 7→ −φa(t, ~x) for the Goldstone boson

fields, or equivalently, U(t, ~x) 7→ U †(t, ~x), in the Leff , then Leff doesn’t change. It means that

the Leff contains in it’s expansion only terms with even number of Goldstone boson fields. In

this case the Lagrangian Leff is of so-called even intrinsic parity. There also exists odd intrinsic

parity sector of the mesonic ChPT [16, 17], but we are interested in even intrinsic parity sector

only.

However, as we saw, in real world the symmetry SU(3)L × SU(3)R is not perfect, because

the QCD Lagrangian contains quark mass term

LM = −q̄Mq = −q̄RMqL − q̄LM †qR.

In order to incorporate the consequences of this fact into the effective-Lagrangian framework,

one makes use of the following argument [18]: even though M is in reality just a constant matrix

and does not transform along with the quark fields, LM would be invariant if M transformed as

M 7→ RML†.

One then constructs the most general Lagrangian, which is invariant under simultaneous trans-

formations U 7→ RUL†, M 7→ RML†. At lowest order in M one obtains

Ls.b. =
F 2

0B0

2
Tr(MU † + UM †),

where the subscript s.b. refers to symmetry breaking. Here B0 is the new constant, which can

be related to the chiral quark condensate [4] as

3F 2
0B0 = −〈0|q̄q|0〉.

Substituting the quark-mass matrix M and expanding the Ls.b. in power series in the meson

fields, one reads off the masses of the Goldstone bosons, to lowest order in the quark masses,

M2
π = 2B0m,

10



M2
K = B0(m+ms),

M2
η =

2

3
B0 (m+ 2ms) , (14)

where for the sake of simplicity mu = md = m is set. Using the relation B0 = −〈0|q̄q|0〉/(3F 2
0 ),

we see that quadratic masses of the Goldstone bosons linearly depend on the quark condensate

and the quark masses. The latter result is supported by the analysis of the data on K+ →
π+π−e+νe [19][20], which means that the quark condensate really characterizes spontaneous

chiral symmetry breaking in QCD.

2.3 Effective Lagrangians in ChPT

As we have seen, the effective chiral Lagrangian contains infinite number of terms, which have

the same symmetry properties as underlying theory, i.e. QCD. In the ChPT, the most general

chiral Lagrangian describing the dynamics of the Goldstone bosons is organized as an infinite

sum of terms with an increasing number of derivatives and quark mass terms,

Leff = L2 + L4 + L6 + . . . , (15)

where the subscripts refer to the order in a momentum and quark mass expansion. According to

formulas (14) and on-shell condition p2 = M2, for consistency, one should count one quark-mass

term as being of the same order as two derivatives:

mq ∼ O(p2).

Therefore, the index 2 denotes either two derivatives or one quark mass term. Consequently,

the L2 contains terms of so-called chiral order O(p2). Analogously, L4 denotes terms of chiral

order O(p4) with corresponding numbers of derivatives and quark mass terms etc.

Since we are interested in making sensible predictions using this effective Lagrangian, we

need some rule, which would tell us what diagrams one has to take into account when calculating

given physical matrix element with defined accuracy. Such a rule was given in Ref. [8] and

is known as Weinberg’s power counting scheme (or argument). It analyzes the behavior of a

given diagram under a linear rescaling of all the external momenta, and a quadratic rescaling

of the light quark masses (quadratic Goldstone boson masses):

pi 7→ tpi, mq 7→ t2mq (M2 7→ t2M2).

Let A(pi,mq) to be the amplitude of a given diagram. After rescaling it takes the form

A(tpi, t
2mq) = tDA(pi,mq).

11



The D is a number called the chiral dimension of a given diagram and is equal to

D = 2 + 2L+
∞∑
n=1

2(n− 1)V2n, (16)

where V2n denotes the number of vertices originating from L2n and L is a number of independent

loops [4]. Going to small enough momenta and masses, such that the t changes in the range

0 < t < 1, means that diagrams with small D, such as D = 2, 4, should dominate. Moreover,

the given diagram with chiral dimension D is of chiral order O(pD). Thus, we conclude, that

in order to calculate a physical matrix element with a given finite accuracy, it is sufficient to

consider only finite number of diagrams.

Calculating loop graphs, we might expect, that a given amplitude is proportional to some

power of the expansion parameter p/Λχ, where Λχ is some typical hadronic scale. The loop

expansion suggests

Λχ ∼ 4πF0 ≈ 1.2 GeV

as a natural scale of the chiral expansion [21]. This parameter is large enough that one can

apply chiral Lagrangians to low energy processes involving pions and kaons. If it were just

F0, then chiral effective Lagrangians would not be useful even for pions, since their mass is

approximately Mπ ≈ 140 MeV, while F0 is 93 MeV. Restricting the domain of applicability of

ChPT to momenta |p| = O(MK), where MK ≈ 500 MeV is kaon mass, the expansion parameter

is expected to be
M2

K

16π2F 2
0

= 0.18.

There is also improved estimate of Λχ [22, 23]:

Λχ ∼
4πF0√
Nf

,

where Nf is the number of light flavors (Nf=2, 3). It stems from the fact, that the greater Nf is,

the more number of mesons can run in loops. Therefore, one would expect considerably better

convergence of the chiral expansion in the SU(2)L × SU(2)R framework, because in this case

Nf = 2 and |p| = O(Mπ). Finally, one should also mention that the so-called chiral logarithms

emerge from the loops, so the convergence of the perturbative expansion is in fact slower than

can be concurred from the above ”rule of the thumb”.

Next, in connection with mentioned at the end of subsection 1.1, we want to promote the

global symmetry of the effective Lagrangian Leff to a local one. Then, using this new locally

chiral invariant Lagrangian Leff , we can approximate the generating functional of QCD at low

energies by the generating functional, obtained with help of the effective field theory:

eiZqcd[v,a,s,p] ≈ eiZ[v,a,s,p] =
∫

[dU(φ)]ei
∫
d4xLeff , (17)

12



where [dU(φ)] denotes the measure of the functional integral.

In order to construct the effective chiral Lagrangian for a local G = SU(3)L × SU(3)R

symmetry, one introduces the same external fields v, a, s and p as in QCD, and defines the

covariant derivative dµA for any object transforming as A 7→ RAL†:

dµA = ∂µA− irµA+ iAlµ, dµA 7→ R(dµA)L†.

It transforms in the same way as the object A. Also, the following combinations are defined:

χ = 2B0(s+ ip),

Rµν = ∂µrν − ∂νrµ − i[rµ, rν ], Lµν = ∂µlν − ∂νlµ − i[lµ, lν ],

where Rµν and Lµν are the field strength tensors associated with the rµ and lµ correspondingly.

Introduced expressions can be used as the building blocks for construction of the locally chiral

element G C P

U RUL† UT U †

dλ1 · · · dλnU Rdλ1 · · · dλnUL† (dλ1 · · · dλnU)T (dλ1 · · · dλnU)†

χ RχL† χT χ†

dλ1 · · · dλnχ Rdλ1 · · · dλnχL† (dλ1 · · · dλnχ)T (dλ1 · · · dλnχ)†

rµ RrµR
† + iR∂µR

† −lTµ lµ

lµ LlµL
† + iL∂µL

† −rTµ rµ

Rµν RRµνR
† −(Lµν)

T Lµν

Lµν LLµνL
† −(Rµν)

T Rµν

Table 2: Transformation properties of the building blocks under the group (G), charge conjugation (C),
and parity (P ). The expressions for adjoint matrices are obtained by taking the Hermitian conjugate
of each entry.

invariant effective Lagrangian. In Table 2 are presented the transformation properties of all

building blocks under the group (G), charge conjugation (C), and parity (P).

In the chiral counting scheme of ChPT the elements for consistency should be counted as:

U = O(1), DµU = O(p), rµ, lµ = O(p), Rµν , Lµν = O(p2), χ = O(p2). (18)

and any additional covariant derivative counts as O(p). Using this counting rule and Table 2

for the building blocks, we can construct the most general, Lorentz, C, P and locally-invariant

effective Lagrangian at lowest chiral order O(p2) [4, 5, 6]; it is of the form

L2 =
F 2

0

4
Tr[dµU(dµU)†] +

F 2
0

4
Tr[χU † + Uχ†]. (19)
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The Lagrangian L2 can be written as

L2 =
F 2

0

4
〈dµUdµU † + χU † + Uχ†〉,

where it assumed that 〈. . .〉 ≡ Tr[. . .] and dµU † ≡ (dµU)†. Substituting the scalar density s

expansion around the quark-mass matrix

s = M + . . .

in L2, we obtain the same relations for meson masses (14), which justify the chiral counting

rule (18).

In the same way it is possible to construct the most general Lagrangian at next-to-leading

order, i.e. at chiral order O(p4) [5]. It reads

L4 = L1〈dµU †dµU〉2 + L2〈dµU †dνU〉〈dµU †dνU〉

+L3〈dµU †dµUdνU †dνU〉+ L4〈dµU †dµU〉〈χ†U + χU †〉

+L5〈dµU †dµU(χ†U + U †χ)〉+ L6〈χ†U + χU †〉2 + L7〈χ†U − χU †〉2

+L8〈χ†Uχ†U + χU †χU †〉 − iL9〈RµνdµUdνU
† + LµνdµU

†dνU〉

+L10〈U †RµνULµν〉+H1〈RµνR
µν + LµνL

µν〉+H2〈χ†χ〉 . (20)

and satisfies local chiral invariance, Lorentz invariance, P and C. We see that while at lead-

ing order one needs two constants F0, B0 to determine the low-energy behavior of the Green

functions, at next-to-leading order it is necessary 10 additional low-energy coupling constants

L1, . . . , L10 (the terms H1, H2 are of no physical relevance, since they contain only external

fields).

As one can see, the Lagrangian L4 contains terms which are not presented in L2. This is the

general feature of effective field theories, which are non-renormalizable in a usual sense like QED

or QCD. However, ChPT Lagrangian Leff is the most general chiral invariant Lagrangian, and

since the divergences can be absorbed by local counterterms that exhibit the same symmetries

as the initial Lagrangian [24], it automatically includes all terms needed for renormalization to

every order in the loop expansion.

Consider one–loop diagrams generated by the L2. They are of order O(p4), since according

to Eq. (16), L = 1 for D = 4. Using dimensional regularization, which preserves symmetries

of theory, in particular chiral symmetry, one finds that the counter terms necessary to absorb

divergences produced by the one–loop diagrams, have the structure of the terms presented in

the next-to-leading order Lagrangian L4. Therefore the one-loop divergences can be eliminated

by an appropriate renormalization of the low-energy constants Li and Hi. Later, in connection

with our thesis problem, we will consider this more precisely.
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3 Virtual photons in ChPT

3.1 Effective Lagrangian at O(p4)

In real world, the pseudoscalar mesons not only have masses, but some of them, for example

π+, K+ are also electrically charged particles. Therefore it is necessary to include electromag-

netic interactions between them in ChPT framework. To that end, consider the Lagrangian

term, which is responsible for the interaction of quarks to the electromagnetic field:

Lem = −q̄QAµγµq = −q̄RQAµγµqR − q̄LQAµγµqL,

where Aµ is the electromagnetic field potential and Q is the quark charge matrix

Q =
e

3


2 0 0

0 −1 0

0 0 −1


If we introduce the so called spurion fields QR(x), QL(x) and rewrite Lem as follows

Lem = −q̄RQRAµγ
µqR − q̄LQLAµγ

µqL,

then Lem will be locally chiral invariant, if the spurions transform under SU(3)L × SU(3)R as

QR(x) 7→ RQR(x)R†, QL(x) 7→ LQL(x)L†. (21)

Additionally, it is possible the following modification of the covariant derivative dµU :

dµU = ∂µU − iRµU + iULµ,

with

Rµ = vµ + aµ + AµQR, Lµ = vµ − aµ + AµQL.

In order to save the previously introduced power counting scheme one puts

QR, QL = O(p), Aµ = O(1).

Using the spurions QR(x), QL(x) as additional building blocks and the counting rule for

them, one can construct the most general Lagrangian, which includes electromagnetic interac-

tions and which is consistent with the chiral symmetry, P and C invariance. One then sets the

spurion fields to the constant charge matrix Q:

QR(x) = QL(x) = Q.
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At leading order, i.e. at chiral order O(p2), it reads [26, 27]

L(Q)
2 =

F 2
0

4
〈dµU+dµU + χ+U + U+χ〉 − 1

4
F µνFµν

− 1

2a
(∂µAµ)2 + C〈QRUQLU

+〉, (22)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor, a is the gauge fixing

parameter and C is the new constant, which determines the purely electromagnetic part of the

masses of the charged pions and kaons in the chiral limit,

M2
π± = M2

K± = 2e2 C

F 2
0

+O(mq)

The Lagrangian (22) generates one-loop graphs consisting of meson and photon lines. They

are of order O(p4) and contain divergences, which should be absorbed by adding tree graphs,

evaluated with the next-to-leading order Lagrangian L(Q)
4 . Consider loop expansion from the

point of view of path integral formulation of quantum field theory. The generating functional

of ChPT (17) reads, up to and including terms of order O(p4)

eiZ[v,a,s,p] =
∫

[dU ][dAµ]e
i
∫
d4x

{
L(Q)

2 +L(Q)
4

}
, (23)

where [dAµ] means the path integral measure for electromagnetic field. One should calculate

Z[v, a, s, p] at one-loop level. To this purpose, we note that the classical field theory associated

with a given Lagrangian is equivalent to the set of tree graphs of the corresponding quantum

field theory. Thus if we use the classical field equations to evaluate Z[v, a, s, p], then Z[v, a, s, p]

generates Green functions at tree approximation (leading order) [29, 30].

Since the vertices of the Lagrangian L(Q)
4 only occur in tree graphs, the contribution from

L(Q)
4 to the generating functional can be calculated by evaluating the action

∫
dxL(Q)

4 at the

classical solution of the equations of motion. Therefore the most general Lagrangian at O(p4)

can be simplified with the help of the equations of motion.

The next-to-leading order Lagrangian in the presence of virtual photons was constructed

in Ref. [27]. Additional building blocks with their transformation properties are presented in

Table 3. The quantities cRµQR, c
L
µQL are defined as

element G C P

QR RQRR
† QT

L QL

cRµQR RcRµQRR
† (cLµQL)T cLµQL

QL LQLL
† QT

R QR

cLµQL LcLµQLL
† (cRµQR)T cRµQR

Table 3: Transformation properties of the additional building blocks under the group (G), charge
conjugation (C), and parity (P ).
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cIµQI = ∂µQI − i[Iµ, QI ], I = R,L .

They transform under SU(3)R× SU(3)L in the same way as QR and QL. Since one further sets

QR = QL = Q = const, so cIµQ = −i[Iµ, Q]. The Lagrangian L(Q)
4 has the following form:

L̄(Q)
4 = L̄p4 + F 2

0 {K1〈dµU+dµU〉〈Q2〉+K2〈dµU+dµU〉〈QUQU+〉

+K3(〈dµU+QU〉〈dµU+QU〉+ 〈dµUQU+〉〈dµUQU+〉)

+K4〈dµU+QU〉〈dµUQU+〉+K5〈(dµU+dµU + dµUdµU
+)Q2〉

+K6〈dµU+dµUQU
+QU + dµUdµU

+QUQU+〉

+K7〈χ+U + U+χ〉〈Q2〉+K8〈χ+U + U+χ〉〈QUQU+〉

+K9〈(χU+ + Uχ+ + χ+U + U+χ)Q2〉

+K10〈(χU+ + Uχ+)QUQU+ + (χ+U + U+χ)QU+QU〉

+K11〈(χU+ − Uχ+)QUQU+ + (χ+U − U+χ)QU+QU〉

+K12〈dµU+[cµRQ,Q]U + dµU [cµLQ,Q]U+〉

+K13〈cµRQUcLµQU+〉+K14〈cµRQcRµQ+ cµLQcLµQ〉}

+F 4
0 {K15〈QUQU+〉2 +K16〈QUQU+〉〈Q2〉+K17〈Q2〉2}, (24)

where it is supposed, that U = Ū , Aµ = Āµ are classical solutions, which are determined by the

equations of motion,

dµd
µŪ Ū+ − ŪdµdµŪ+ + Ūχ+ − χŪ+ − 1

3
〈Ūχ+ − χŪ+〉

+
4C

F 2
0

(
ŪQŪ+Q−QŪQŪ+

)
= 0,

[
gµν∂

2 −
(

1− 1

a

)
∂µ∂ν

]
Āν +

iF 2
0

2
〈dµŪ [Ū+, Q]〉 = 0. (25)

The Lagrangian L̄p4 comes from the strong sector and is given by Eq. (20).
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3.2 Generating functional at one-loop

The generating functional of Eq. (23) becomes

eiZ[v,a,s,p] = ei
∫
d4xL̄(Q)

4

∫
[dU ][dAµ]ei

∫
d4xL(Q)

2

To evaluate the one-loop graphs produced by the Lagrangian L(Q)
2 , we expand the fields

U(x), Aµ(x) in the neighborhood of the classical solutions Ū , Āµ [32]:

U = ueiξ/F0u = u

(
1 + i

ξ

F0

− 1

2

ξ2

F 2
0

+ · · ·
)
u

= Ū +
i

F0

uξu− 1

2F 2
0

uξ2u+ . . .

Aµ = Āµ + εµ, (26)

where Ū = u2 and ξ is a traceless hermitian matrix, ξ =
∑
a ξ

aλa. Then we substitute this

expansion in the action S =
∫
dxL(Q)

2 and keep only terms, quadratic in the fluctuations ξ, εµ.

As a result we obtain [27, 31]

S =
∫
dxL̄(Q)

2 − 1

2

∫
dxηAD

ABηB,

where the fluctuations are collected in a new flavour space elements ηA = (ξa, εµ) = (ξ1, . . . , ξ8,

ε0, . . . , ε3) and matrix D is the differential operator defined as follows:

D = D0 + δ, (27)

D0 =

 ∂2δab 0

0 −∂2gσρ +
(
1− 1

a

)
∂σ∂ρ

 , (28)

δ(x) = {Yµ, ∂µ}+ YµY
µ + Λ, (29)

with

Yµ(x) =

 Γabµ Xaρ
µ

Xσb
µ 0

 , Λ(x) =

 σab −1
2
γaρ

−1
2
γσb −ρgσρ

 . (30)

The elements of these matrices are given by the expressions:

Γabµ = −1

2
〈[λa, λb]Γµ〉,

Xaρ
µ = −Xρa

µ = Xaδρµ, Xa = −1

4
〈HLλ

a〉,

σab =
1

2
〈[∆µ, λ

a][∆µ, λb]〉+
1

4
〈{λa, λb}σ〉 − F 2

0

4
〈HLλ

a〉〈HLλ
b〉
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− C

8F 2
0

{
〈[HR +HL, λ

a][HR −HL, λ
b] + a↔ b〉

}
,

γaρ = γρa = F0〈
(

[HR,∆
ρ] +

1

2
DρHL

)
λa〉,

ρ =
3

8
F 2

0 〈H2
L〉, (31)

where

DµHL = ∂µHL + [Γµ, HL]

Γµ =
1

2
[u+, ∂µu]− 1

2
iu+R̄µu−

1

2
uL̄µu

+,

∆µ =
1

2
u+dµŪu

+ = −1

2
udµŪ

+u,

HR = u+QRu+ uQLu
+,

HL = u+QRu− uQLu
+,

σ =
1

2
(u+χu+ + uχ+u). (32)

The generating functional thus takes the form

eiZ[v,a,s,p] = e
i
∫
dx

{
L̄(Q)

2 +L̄(Q)
4

} ∫
[dξa][dεµ]e−

i
2

∫
dxηAD

ABηB .

The remaining path integral over fluctuations reduces to a Gaussian integral and we finally

obtain Z[v, a, s, p] at one-loop:

Z[v, a, s, p] =
∫
dxL̄(Q)

2 +
∫
dxL̄(Q)

4 +
i

2
ln detD, (33)

where all quantities are to be evaluated at the classical solutions Ū(x), Āµ(x). The determinant

of the operator D requires renormalization, since it contains divergences of one-loop graphs

with arbitrary number of external legs. These divergences may be absorbed by an appropriate

renormalization of the low-energy coupling constants in the Lagrangian L̄(Q)
4 of Eq. (24):

Li = Lri (µ) + Γiλ,

Hi = Hr
i (µ) + ∆iλ,

Ki = Kr
i (µ) + Σiλ, (34)

where λ is defined as

λ =
µd−4

16π2

{
1

d− 4
− 1

2
[ln(4π) + Γ′(1) + 1]

}
with d denoting the number of space-time dimensions. The renormalized constants Lri (µ),Hr

i (µ),

Kr
i (µ) are finite and depend on the scale µ introduced by dimensional regularization. The coef-

ficients Γi, ∆i, Σi are some numbers, which has to be chosen in such a way, that the generating
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functional (33) is finite. The resulting Z[v, a, s, p] generates the general solution of the Ward

identities at next-to-leading order.

We see that in order to determine the coefficients Γi, ∆i, Σi we need to regularize the

determinant of the operator D. Thus, we have to separate out the divergent part of the one-

loop generating functional

Zone loop =
i

2
ln detD.

There exists the so-called heat kernel method [33], which allows to calculate the divergent part

of the ln detD. However, this method can be applied (at least, without modifications) only to

the differential operators of so-called minimal kind. The operator D is nonminimal in general.

It becomes minimal when the gauge parameter is set to 1: a = 1 (Feynman gauge). This is the

case considered in Ref. [27]. Using the heat kernel method for the operator D, one obtains the

divergent part of the one-loop functional [5, 27]:

Za=1
one loop = − 1

16π2

1

d− 4

∫
d4x Sp

(
1

12
YµνY

µν +
1

2
Λ2
)

+ finite parts, (35)

where Sp means the trace in the flavour space ηA and Yµν denotes the field strength tensor of

Yµ,

Yµν = ∂µYν − ∂νYµ + [Yµ, Yν ].

One then can find the coefficients Γi, ∆i, Σi. The coefficients Γi, ∆i are listed in Ref. [6], and

Σi in Ref. [27].
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3.3 β-functions in arbitrary gauge

We are now in a position to state the main aim of the present thesis. As we have already

mentioned, the coefficients Σi, or alternatively the β-functions, defined from Eq. (34) as

βi = µ
dKr

i (µ)

dµ
= − 1

16π2
Σi,

were calculated in Feynman gauge a = 1. We extend the evaluation of Σi to the case of the

arbitrary gauge and formulate the problem:

Calculate the coefficients Σi for

the arbitrary gauge parameter a.

3.3.1 Description of the method

In order to solve this problem, we chose another method of calculation of the divergent part of

the one-loop functional Zone loop [5, 28]. We expand the determinant of D of Eq. (27) in powers

of the operator δ :

Zone loop =
i

2
ln det(D0 + δ) =

i

2
ln detD0 +

i

2
Tr(D−1

0 δ)

− i
4

Tr(D−1
0 δD−1

0 δ) +
i

6
Tr(D−1

0 δD−1
0 δD−1

0 δ)

− i
8

Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) + finite parts, (36)

where trace Tr denotes, in coordinate space, the integral Tr{. . .} =
∫

dx〈x|Sp{. . .}|x〉. We

have written out only terms, which contain the ultraviolet divergences. In momentum space

at large momenta the matrix element of the operator D0 is proportional to 1/k2, while the

matrix element of the operator δ is proportional to k. Each trace in the sum at large momenta

is proportional to the integral
∫
d4k 1

kn
, which is divergent only for n ≤ 4. Therefore, divergent

are only traces presented in Eq. (36). We checked that in case of the minimal operator D, the

expansion (36) leads to the same divergent part of Eq. (35), obtained by the heat kernel method

(this was done in the strong sector, without virtual photons). Below we will use dimensional

regularization as a convenient one.

To perform the calculations in the arbitrary gauge we at first explicitly expand the traces

in the flavor space ηA. For the first trace we have:

Sp{D−1
0 δ} = (D−1

0 δ)AA = (D−1
0 )ab(δ)

ba + (D−1
0 )σρ(δ)

ρσ,

where we used the fact that (D−1
0 )aρ = (D−1

0 )σb = 0. Inserting necessary number of completeness
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relation in coordinate space
∫
dx|x〉〈x| = 1, we obtain

Tr(D−1
0 δ) =

∫
dxdy

{
〈x|(D−1

0 )ab|y〉〈y|(δ)ba|x〉+ 〈x|(D−1
0 )σρ|y〉〈y|(δ)ρσ|x〉

}
.

The matrix elements of the operators D−1
0 and δ have the following form:

〈x|(D−1
0 )ab|y〉 = δab∆(x− y),

〈x|(D−1
0 )µν |y〉 = −gµν∆(x− y) + ∆µν(x− y),

〈y|(δ)AB|x〉 = 2Y AB
µ (y)∂µy δ(x− y) + cAB(y)δ(x− y), (37)

where

∆(x− y) =
∫ ddk

(2π)d
e−ik(x−y)

−k2
,

∆µν(x− y) = (a− 1)
∫ ddk

(2π)d
kµkν

k4
e−ik(x−y),

c(x) = (∂µY
µ) + YµY

µ + Λ. (38)

Using Eq. (37), we separate the divergent terms, that depend on the gauge parameter (through

∆µν(x)), and hereby obtain for Tr(D−1
0 δ):

Tr(D−1
0 δ) = Tr(D−1

0 δ)a=1 +
∫
dxdy∆σρ(x− y)〈y|(δ)ρσ|x〉,

where Tr(D−1
0 δ)a=1 means the trace, which is calculated in Feynman gauge. We note, that since

Y σρ
µ (x) = 0, then the matrix element of the operator δ simplifies to

〈y|(δ)σρ|x〉 = cσρ(y)δ(x− y). (39)

This fact considerably reduces the number of divergent integrals, that one has to evaluate.

Substituting the expression (39), partially integrating over the coordinate y and then taking

integral over x, we get

Tr(D−1
0 δ) = Tr(D−1

0 δ)a=1 +
∫
dy∆σρ(0)cρσ(y).

The quantity ∆σρ(0), which is the integral in momentum space, is zero in dimensional regular-

ization,

∫ ddk

(2π)d(k2)m
= 0, for any m; ∆σρ(0) = (a− 1)

∫ ddk

(2π)d
kσkρ
k4
∼ gσρ

∫ ddk

(2π)d
1

k2
= 0.

Thus, Tr(D−1
0 δ) = Tr(D−1

0 δ)a=1. We perform the same steps for other traces in the expansion

(36). Details are provided in appendix B. The divergent part of the one-loop functional in the
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arbitrary gauge is given by the expression

divZone loop = divZa=1
one loop +

1

4
F 2

0 (1− a)
1

16π2ε

∫
dx
{
〈[HL,∆µ]2〉 − 〈[HR,∆µ]2〉

+〈H2
Lσ〉 − 2〈[HR,∆µ]Gµ〉 − 3

4
〈GµG

µ〉 − 1

8
F 2

0Z〈[HR +HL, HR −HL]2〉
}
, (40)

where div means divergent part, Z = C/F 4
0 and Gµ is defined as

Gµ = u+cµRQu− uc
µ
LQu

+.

3.3.2 Three flavour case

Next, with help of Eq. (32), we simplify the result:

〈[HL,∆µ]2〉 − 〈[HR,∆µ]2〉 = −〈dµŪ+dµŪQŪ
+QŪ + dµŪdµŪ

+QŪQŪ+〉+ 2〈QdµŪQdµŪ+〉,

〈H2
Lσ〉 =

1

2
〈(χŪ+ + Ūχ+ + χ+Ū + Ū+χ)Q2〉

−1

2
〈(χŪ+ + Ūχ+)QŪQŪ+ + (χ+Ū + Ū+χ)QŪ+QŪ〉,

〈[HR,∆µ]Gµ〉 = −1

2
〈dµŪ+[cµRQ,Q]Ū + dµŪ [cµLQ,Q]Ū+〉

−1

2
〈dµŪ+cµRQŪQ+ dµŪQŪ

+cµRQ+ dµŪc
µ
LQŪ

+Q+ dµŪ
+QŪcµLQ〉,

〈GµG
µ〉 = 〈cµRQcRµQ+ cµLQcLµQ〉 − 2〈cµRQŪcLµQŪ+〉,

〈[HR +HL, HR −HL]2〉 = 32〈QŪQŪ+QŪQŪ+ −Q2ŪQ2Ū+〉. (41)

The second trace in the expression for 〈[HR,∆µ]Gµ〉 can be transformed, using partial integra-

tion and the equation of motion, obeyed by Ū [34]. We obtain

〈dµŪ+cµRQŪQ+ dµŪQŪ
+cµRQ+ dµŪc

µ
LQŪ

+Q+ dµŪ
+QŪcµLQ〉 =

〈dµŪ+dµŪQŪ
+QŪ + dµŪdµŪ

+QŪQŪ+〉 − 2〈QdµŪQdµŪ+〉

+
1

2
〈(χŪ+ − Ūχ+)QŪQŪ+ + (χ+Ū − Ū+χ)QŪ+QŪ〉

+4F 2
0Z〈QŪQŪ+QŪQŪ+ −Q2ŪQ2Ū+〉. (42)

Thus, the final result for divZone loop is

divZone loop = divZa=1
one loop −

1

16π2(d− 4)
(1− a)F 2

0

∫
dx
{

1

4
〈(χŪ+ + Ūχ+ + χ+Ū + Ū+χ)Q2〉

−1

4
〈(χŪ+ + Ūχ+)QŪQŪ+ + (χ+Ū + Ū+χ)QŪ+QŪ〉
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+
1

4
〈(χŪ+ − Ūχ+)QŪQŪ+ + (χ+Ū − Ū+χ)QŪ+QŪ〉

+
1

2
〈dµŪ+[cµRQ,Q]Ū + dµŪ [cµLQ,Q]Ū+〉+

3

4
〈cµRQŪcLµQŪ+〉

−3

8
〈cµRQcRµQ+ cµLQcLµQ〉

}
. (43)

If we write the coefficients Σi as

Σi = Σa=1
i + Σa

i ,

where Σa=1
i are ones calculated in Feynman gauge, then Σa

i can be directly read off from Eq.

(43). They are presented in Table 4.

i Σa
i Σi

1 0 3
4

2 0 Z

3 0 −3
4

4 0 2Z

5 0 −9
4

6 0 3
2
Z

7 0 0

8 0 Z

9 1
4
(1− a) −1

4
a

10 −1
4
(1− a) 3

2
Z + 1

4
a

11 1
4
(1− a) 1

4
(3

2
− a)

12 1
2
(1− a) 1

2
(3

2
− a)

13 3
4
(1− a) 3

4
(1− a)

14 −3
8
(1− a) −3

8
(1− a)

15 0 3
2

+ 3Z + 14Z2

16 0 −3− 3
2
Z − Z2

17 0 3
2
− 3

2
Z + 5Z2

Table 4: The coefficients Σi and their gauge dependent parts Σa
i .
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3.4 Discussion of the result

Next, we would like to discuss the validity of the result. First, we checked, whether the parts

Σa
i introduce the dependence of the physical quantities on the renormalization scale µ. From

physical point of view, they should be independent of µ. We considered the masses of pions,

kaons and eta meson, calculated at one-loop level with virtual photons included [27]. The

expressions for them contain the following combinations of the renormalized constants Kr
i (µ):

C1 = 6Kr
1 + 6Kr

2 + 5Kr
5 + 5Kr

6 − 6Kr
7 − 15Kr

8 − 5Kr
9 − 23Kr

10 − 18Kr
11,

C2 = Kr
8 ,

C3 = 12Kr
1 + 12Kr

2 − 18Kr
3 + 9Kr

4 + 10Kr
5 + 10Kr

6 − 12Kr
7 − 12Kr

8 − 10Kr
9 − 10Kr

10,

C4 = 3Kr
8 +Kr

9 +Kr
10,

C5 = 6Kr
1 + 6Kr

2 + 5Kr
5 + 5Kr

6 − 6Kr
7 − 24Kr

8 − 2Kr
9 − 20Kr

10 − 18Kr
11,

C6 = 3Kr
1 + 3Kr

2 +Kr
5 +Kr

6 − 3Kr
7 − 3Kr

8 −Kr
9 −Kr

10,

C7 = Kr
9 +Kr

10,

C8 = 12Kr
1 + 12Kr

2 − 6Kr
3 + 3Kr

4 + 6Kr
5 + 6Kr

6 − 12Kr
7 − 12Kr

8 − 4Kr
9 − 4Kr

10. (44)

Acting by the operator µ d
dµ

on both sides, we get the β-functions, or equivalently the Σi

coefficients, on the right-hand sides. Using Table 4, we see that the quantities µ d
dµ
Ci still remain

equal to zero, as they should. We also considered the amplitude of process π−K+ → π0K0 [35].

There are combinations of first six Kr
i in its expression. According to Table 4, µ d

dµ
Ci are zero

for them. Another combinations are

C9 = 9(M2
π + 2M2

K)Kr
8 −M2

πK
r
9 + (17M2

π + 18M2
K)Kr

10 + 18(M2
π +M2

K)Kr
11,

C10 = Kr
5 +Kr

6 + 12Kr
8 − 6Kr

10 − 6Kr
11,

C11 = 18Kr
3 − 9Kr

4 − 12Kr
8 + 2Kr

9 − 34Kr
10 − 36Kr

11. (45)

They are scale independent as well. We cannot check the gauge invariance of physical quantities,

since the expressions for renormalized constants Kr
i (µ) may contain parts, that do not depend

on µ, but can in general depend on the gauge parameter [36].

In addition, we considered the relations between three- and two-flavour low-energy constants

[37] and applied our result to them. It turns out that the scale-dependent part of the matching

condition between SU(2) and SU(3) LECs is gauge-independent, as it should. Details are

provided by D. Agadjanov in his thesis, in which two-flavour case is considered.

We would like to mention other approach, which was used to study the gauge dependence

of constants Kr
i (µ) with i = 1, . . . , 14 [36, 38]. Our result is in agreement with the findings of

Refs. [36, 38]. We also mention Ref. [39], in which the author provides the expression for the

divergent part of the one-loop functional for operators of non-minimal kind. The expression

given in that paper is not suited for a direct application to ChPT.
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4 Conclusion

In present thesis we calculated the one-loop generating functional for mesons and virtual pho-

tons in case of arbitrary gauge. The problem was that the usual heat kernel method cannot

be applied. Therefore, we chose another method, which allowed to solve the problem. Then

we evaluated the β-functions of the electromagnetic low-energy constants. After that, we con-

sidered different checks on our result. To that end, we checked, if the β-functions introduce

the dependence of the physical quantities on renormalization scale. We took the masses of

pions, kaons, eta meson and amplitude of π−K+ → π0K0 process. In all these cases we found

scale independence, as it should. We also checked the relations between three- and two-flavour

β-functions. They were all valid. Further, we compared our β-functions with ones, obtained

by another method and concluded that they coincide.

In future, we plan to study the gauge dependence of the scale-independent parts of the

constants Kr
i (µ). We also plan to consider the problem in context of lattice QCD calculation

of the low-energy constants.
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Appendices

A Integrals

In this appendix we collect the divergent parts of necessary integrals, that are needed during

the calculations with help of dimensional regularization. We note that d = 4− 2ε.

∫ ddp

(2π)d
pµpν

[p2 − 2kp+m2]3
=

1

2Γ(3)

i

16π2ε
gµν + f. p.,

∫ ddp

(2π)d
pµpνpλ

[p2 − 2kp+m2]3
=

1

2Γ(3)

i

16π2ε
[gµνkλ + gµλkν + gνλkµ] + f. p.,

∫ ddp

(2π)d
pµpνpλpρ

[p2 − 2kp+m2]3
=

1

2Γ(3)

i

16π2ε

{
1

2
[gµνkρkλ + gµλkρkν + gνλkµkρ + gµρkνkλ+

+gνρkµkλ + gλρkµkν ]− 1

4
(m2 − k2)[gµνgρλ + gµλgρν + gνλgµρ]

}
+ f. p.,

∫ ddp

(2π)d
pµpνpλpρ

[p2 − 2kp+m2]4
=

1

4Γ(4)

i

16π2ε
[gµνgρλ + gµλgρν + gνλgµρ] + f. p.,

∫ ddp

(2π)d
pµpνpλpρpσ

[p2 − 2kp+m2]4
=

1

4Γ(4)

i

16π2ε
[(gµνgσρ + gµρgσν + gνρgσµ)kλ

+(gµνgσλ + gµλgσν + gνλgµσ)kρ + (gµλgσρ + gµρgλσ + gλρgµσ)kν

+(gνλgρσ + gνρgσλ + gλρgσν)kµ + (gµνgρλ + gµλgρν + gνλgµρ)kσ] + f. p.,

∫ ddp

(2π)d
pµpνpλpρpσpε

[p2 − 2kp+m2]5
=

1

8Γ(5)

i

16π2ε
[(gµνgσρ + gµρgσν + gνρgσµ)gλε

+(gµνgσλ + gµλgσν + gνλgµσ)gρε + (gµλgσρ + gµρgλσ + gλρgµσ)gνε

+(gνλgρσ + gνρgσλ + gλρgσν)gµε + (gµνgρλ + gµλgρν + gνλgµρ)gσε] + f. p.,

∫ ddp

(2π)d
pµpνpλpρpσpεkαkβ

[p2 − 2kp+m2]6
=

1

16Γ(6)

i

16π2ε
[

(gµνgσρ + gµρgσν + gνρgσµ)(gαβgλε + gαλgβε + gαεgβλ)

+(gµνgσλ + gµλgσν + gνλgµσ)(gαβgρε + gαρgβε + gαεgβρ)

+(gµλgσρ + gµρgλσ + gλρgµσ)(gαβgνε + gανgβε + gαεgβν)

+(gνλgρσ + gνρgσλ + gλρgσν)(gαβgµε + gαµgβε + gαεgβµ)

+(gµνgρλ + gµλgρν + gνλgµρ)(gαβgσε + gασgβε + gαεgβσ)
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+(gασgβρ + gβσgαρ)(gµνgελ + gµεgνλ + gµλgνε)

+(gεσgαρ + gασgερ)(gµνgβλ + gµβgνλ + gµλgνβ)

+(gεσgβρ + gβσgερ)(gµνgαλ + gµαgνλ + gµλgνα)

+(gαλgβν + gβλgαν)(gµρgεσ + gµεgρσ + gµσgνε)

+(gελgαν + gαλgεν)(gµρgβσ + gµβgρσ + gµσgνβ)

+(gελgβν + gβλgεν)(gµρgασ + gµαgρσ + gµσgνα)

+(gαλgβµ + gβλgαµ)(gνρgεσ + gνσgρε) + (gελgαµ + gαλgεµ)(gνρgβσ + gνσgρβ)

+(gελgβµ + gβλgεµ)(gνρgασ + gνσgρα) + (gαµgβν + gβµgαν)(gλρgεσ + gλσgρε)

+(gεµgαν + gαµgεν)(gλρgβσ + gλσgρβ) + (gεµgβν + gβµgεν)(gλρgασ + gλσgρα)] + f. p.

B Calculation of traces

Below, we present the details of calculations.

B.1 Tr(D−1
0 δD−1

0 δ)

We expand the second trace:

Sp{D−1
0 δD−1

0 δ} = (D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

da + 2(D−1
0 )ab(δ)

bσ(D−1
0 )σρ(δ)

ρa

+(D−1
0 )σρ(δ)

ρµ(D−1
0 )µν(δ)

νσ (B.1)

Analogously, we separate the divergent terms, that depend on the gauge parameter (through

∆µν(x)), and hereby obtain for Tr(D−1
0 δD−1

0 δ):

Tr(D−1
0 δD−1

0 δ) = Tr(D−1
0 δD−1

0 δ)a=1

+2
∫
dxdydzdu∆(x− y)∆σρ(z − u)〈y|(δ)aσ|z〉〈u|(δ)ρa|x〉

−2gσρ

∫
dxdydzdu∆(x− y)∆µν(z − u)〈y|(δ)ρµ|z〉〈u|(δ)νσ|x〉

+
∫
dxdydzdu∆σρ(x− y)∆µν(z − u)〈y|(δ)ρµ|z〉〈u|(δ)νσ|x〉

= Tr(D−1
0 δD−1

0 δ)a=1 + 2I + 2K + L, (B.2)

Thus, it is necessary to find the divergent parts of the integrals I, K, L. The integral I is

I =
∫
dxdydzdu∆(x− y)∆σρ(z − u)[2Yµ(y)∂µy δ(y − z) + c(y)δ(y − z)]aσ ×

×[2Yν(u)∂νuδ(u− x) + c(u)δ(u− x)]ρa

=
∫
dydu [−2Yµ(y)∂µy∆(u− y) + b(y)∆(u− y)]aσ ×

×[−2Yν(u)∂νu∆σρ(y − u) + b(u)∆σρ(y − u)]ρa = I1 + I2 + I3 + I4, (B.3)
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where the following matrix is introduced:

b(x) = YµY
µ + Λ− (∂µY

µ). (B.4)

as well as notations for the integrals:

I1 = 4
∫
dydu Y aσ

µ (y)Y ρa
ν (u)Iµ1σρ,

I2 = −2
∫
dydu Y aσ

µ (y)bρa(u)Iµν2σρ,

I3 = −2
∫
dydu Y aσ

µ (y)bρa(u)Iµ3σρ,

I4 =
∫
dydu baσ(y)bρa(u)I4σρ, (B.5)

with

Iµνσρ1 = ∂µy∆(u− y)∂νu∆σρ(y − u),

Iµσρ2 = ∂µy∆(u− y)∆σρ(y − u),

Iµσρ3 = ∆(u− y)∂µu∆σρ(y − u),

Iσρ4 = ∆(u− y)∆σρ(y − u). (B.6)

The Lorentz indices are raised and lowered by the metric tensor gµν . With the help of Eq.(38)

we write the integrals (B.6) in momentum space. For the first integral we have

Iµνσρ1 = (a− 1)
∫ ddk1

(2π)d
ddk2

(2π)d
kν1k

σ
1k

ρ
1k

µ
2

k4
1k

2
2

e−i(k2−k1)(u−y).

Introducing new integration variables

(k1, k2) 7→ (k1, p) : p = k2 − k1,

with the transformation Jacobian J = 1 and Feynman parametrization, the integral Iµνσρ1 takes

the form

Iµνσρ1 = (a− 1)
∫ ddp

(2π)d
e−ip(u−y)F µνσρ

1 ,

where

F µνσρ
1 = 2!

∫ 1

0
dx
∫ x

0
dy
∫ ddk1

(2π)d
kν1k

σ
1k

ρ
1p

µ + kν1k
σ
1k

ρ
1k

µ
1

[k2
1 + 2(1− x)(k1p) + p2(1− x)]

3 .

Here and below we use the values of integrals, presented in appendix A; we obtain F µνσρ
1 :

F µνσρ
1 =

1

12

i

16π2ε

{
1

2
[−gνσpµpρ − gνρpµpσ − gσρpµpν + gµνpσpρ + gµσpνpρ + gµρpνpσ]

−1

4
[gµνgσρ + gµρgσν + gνρgσµ]

}
+ f. p. (B.7)
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Then, integrating over the momenta p with help of the formulas

∫ ddp

(2π)d
pµpνe−ip(u−y) = −∂µu∂νuδ(u− y),

∫ ddp

(2π)d
p2e−ip(u−y) = −∂2

uδ(u− y),

we get Iµνσρ1 and consequently I1, which reads

I1 = −2(a− 1)
i

16π2ε

∫
dxXa∂2Xa + f. p.,

where the result for I1 was simplified by summation over Lorentz indices and the use of property

of the matrix Yµ: Y aσ
µ = −Y σa

µ = Xaδσµ ; the quantity Xa is defined in Eq. (31). In the same

manner we calculate the divergent parts of the other integrals in Eq. (B.6). We obtain

I2 = −1

2
(a− 1)

i

16π2ε

∫
dxXa∂ρb

ρa + f. p.,

I3 = −(a− 1)
i

16π2ε

∫
dxXa∂σb

aσ + f. p.,

I4 = −1

4
(a− 1)

i

16π2ε

∫
dxgσρb

aσbρa + f. p. (B.8)

The values of integrals from appendix A as well as the following additional formula were used:

∫ ddp

(2π)d
pµe−ip(u−y) = i∂µuδ(u− y).

The final expression for the integral I = I1 + I2 + I3 + I4 can be reduced to a more simple one,

if we replace baσ by bσa. As it follows from the definition of the matrix b(x),

baσ = bσa − 2∂µY aσ
µ = bσa − 2∂σXa.

Therefore, we get

I = −(a− 1)
i

16π2ε

∫
dx
{
−2bρa∂ρX

a +
1

4
gσρb

σabρa
}

+ f. p.

The second integral K with help of the Eq. (39), takes the form

K = −gσρ
∫
dxdydzdu∆(x− y)∆µν(z − u)cρµ(y)cνσ(u)δ(y − z)δ(u− x)

= −gσρ
∫
dydu∆(u− y)∆µν(y − u)cρµ(y)cνσ(u). (B.9)

To calculate its divergent part we write

Kµν = Iµν4 = −2!(a−1)
∫ ddp

(2π)d
e−ip(u−y)

∫ 1

0
dx
∫ x

0
dy
∫ ddk1

(2π)d
kµ1k

ν
1

[k2
1 + 2(1− x)(k1p) + p2(1− x)]

3 ,
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Kµν = −1

4
(a− 1)

i

16π2ε
gµνδ(u− y) + f. p.

Then,

K =
1

4
(a− 1)

i

16π2ε

∫
dxgµνgσρc

ρµ(x)cνσ(x) + f. p.

The matrix element cρσ is

cρσ = −(ρ+XaXa)gρσ,

and thus we obtain

K = (a− 1)
i

16π2ε

∫
dx(ρ+XaXa)2 + f. p.

The last integral L can be written as

L =
∫
dydu cρµ(y)cνσ(u)Lσρµν ,

where

Lσρµν = ∆σρ(u− y)∆µν(y − u)

We have

Lσρµν = (a− 1)2
∫ ddp

(2π)d
e−ip(u−y)F σρµν ,

with

F σρµν =
∫ ddk1

(2π)d
kµ1k

ν
1(kσ1 + pσ)(kρ1 + pρ)

k4
1(k1 + p)4

= 3!
∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ ddk1

(2π)d
kµ1k

ν
1k

σ
1k

ρ
1

[k2
1 + 2(1− y)(k1p) + p2(1− y)]4

+ f. p. (B.10)

Taking the divergent part of the integral in momentum space we get Lσρµν :

Lσρµν =
1

24
(a− 1)2 i

16π2ε
[gµνgσρ + gµρgνσ + gµσgνρ]δ(u− y) + f. p.

The integral L becomes

L =
1

24
(a− 1)2 i

16π2ε

∫
dx(ρ+XaXa)2gµνgσρ[g

µνgσρ + gµρgνσ + gµσgνρ] + f. p.

L = (a− 1)2 i

16π2ε

∫
dx(ρ+XaXa)2 + f. p.

Thus, the divergent part of the second trace is

divTr(D−1
0 δD−1

0 δ) = divTr(D−1
0 δD−1

0 δ)a=1

−2(a− 1)
i

16π2ε

∫
dx
{
−2bρa∂ρX

a +
1

4
gσρb

σabρa
}

+
{

2(a− 1) + (a− 1)2
} i

16π2ε

∫
dx(ρ+XaXa)2, (B.11)
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where div means the divergent part.

B.2 Tr(D−1
0 δD−1

0 δD−1
0 δ)

Next we consider the third trace Tr(D−1
0 δD−1

0 δD−1
0 δ). We have:

Sp(D−1
0 δD−1

0 δD−1
0 δ) = (D−1

0 )ab(δ)
bc(D−1

0 )cd(δ)
de(D−1

0 )ef (δ)
fa

+3(D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

dσ(D−1
0 )σρ(δ)

ρa + (D−1
0 )σρ(δ)

ρλ(D−1
0 )λµ(δ)µa(D−1

0 )ab(δ)
bσ

+(D−1
0 )σρ(δ)

ρλ(D−1
0 )λµ(δ)µν(D−1

0 )νε(δ)
εσ (B.12)

We omit the last term, since it produces finite integral, due to Eq. (39). Then,

Tr(D−1
0 δD−1

0 δD−1
0 δ)− Tr(D−1

0 δD−1
0 δD−1

0 δ)a=1 = 3M + 3N + f. p.

= 3
∫
dxdydzdtdudv∆(x− y)∆(z − t)∆σρ(u− v)〈y|(δ)ab|z〉〈t|(δ)bσ|u〉〈v|(δ)ρa|x〉

+3
∫
dxdydzdtdudv {−∆(x− y)∆λµ(z − t)∆(u− v)gσρ −∆(x− y)σρ∆(z − t)∆(u− v)gλµ

+∆σρ(x− y)∆λµ(z − t)∆(u− v)}〈y|(δ)ρλ|z〉〈t|(δ)µa|u〉〈v|(δ)aσ|x〉+ f. p. (B.13)

The integral M is of the form

M =
∫
dydtdv [−2Yµ(y)∂µy∆(v − y) + b(y)∆(v − y)]ab ×

×[−2Yν(t)∂
ν
t ∆(y − t) + b(t)∆(y − t)]bσ[−2Yλ(v)∂λt ∆σρ(t− v) + b(v)∆σρ(t− v)]ρa

= M1 +M2 +M3 +M4 + f. p., (B.14)

where

M1 = −8
∫
dydtdv Y ab

µ (y)Y bσ
ν (t)Y ρa

λ (v)Mµνλ
1σρ ,

M2 = 4
∫
dydtdv Y ab

µ (y)Y bσ
ν (t)bρa(v)Mµν

2σρ,

M3 = 4
∫
dydtdv Y ab

µ (y)Y ρa
ν (v)bbσ(t)Mµν

3σρ,

M4 = 4
∫
dydtdv Y bσ

µ (t)Y ρa
ν (v)bab(y)Mµν

4σρ, (B.15)

with

Mµνλσρ
1 = ∂µy∆(v − y)∂νt ∆(y − t)∂λv∆σρ(t− v),

Mµνσρ
2 = ∂µy∆(v − y)∂νt ∆(y − t)∆σρ(t− v),

Mµνσρ
3 = ∂µy∆(v − y)∆(y − t)∂νv∆σρ(t− v),

Mµνσρ
4 = ∆(v − y)∂µt ∆(y − t)∂νv∆σρ(t− v). (B.16)
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To calculate the divergent part of Mµνλσρ
1 , we write

Mµνλσρ
1 = i3(a− 1)

∫ ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
kµ1k

ν
2k

λ
3k

σ
3k

ρ
3

k2
1k

2
2k

4
3

e−ik1(v−y)−ik2(y−t)−ik3(t−v) (B.17)

Then we similarly introduce the new integration variables:

(k1, k2, k3) 7→ (p, q, k) : p = k1 − k3, q = k2 − k3, k = k3,

with Jacobian J = 1, and obtain

Mµνλσρ
1 = i3(a− 1)

∫ ddp

(2π)d
ddq

(2π)d
eip(y−v)+iq(t−y)Gµνλσρ

1 ,

where

Gµνλσρ
1 = 3!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ ddk

(2π)d
pµkνkλkσkρ + qνkµkλkσkρ + kµkνkλkσkρ + f. p.

[k2 + 2k[p(x− y) + q(1− x)] + p2(x− y + q2(1− z))]4

After integrations, we obtain

Gµνλσρ
1 =

1

4

i

16π2ε

1

24
{(3pµ − qµ)(gνλgρσ + gνρgσλ + gλρgσν)

+(3qν − pν)(gµλgσρ + gµρgλσ + gλρgµσ)− (pλ + qλ)(gµνgσρ + gµρgσν + gνρgσµ)

−(pρ + qρ)(gµνgσλ + gµλgσν + gνλgµσ)− (pσ + qσ)(gµνgρλ + gµλgρν + gνλgµρ)}+ f. p.

Then, integrating over p, q according to the formulas

∫ ddp

(2π)d
pµeip(y−v) = −i∂µy δ(y − v),

∫ ddq

(2π)d
qνeiq(t−y) = i∂νy δ(t− y),

we get Mµνλσρ
1 . After summation over Lorentz indices and performing of the necessary integra-

tions, the divergent part of M1 reads

M1 = 2(a− 1)
i

16π2ε

∫
dxY ab

µ Xa∂µXb + f. p.

The integral Mµνσρ
2 is

Mµνσρ
2 = i2(a− 1)

∫ ddp

(2π)d
ddq

(2π)d
eip(y−v)+iq(t−y)Gµνσρ

2 ,

where

Gµνσρ
2 = 3!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ ddk

(2π)d
kµkνkσkρ

[k2 + . . .]4
+ f. p.
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Thus,

Mµνσρ
2 = − 1

24
(a− 1)

i

16π2ε
[gµνgσρ + gµρgνσ + gµσgνρ]δ(y − v)δ(t− y) + f. p.

We note that the other integrals Mµνσρ
3 ,Mµνσρ

4 have the same divergent part. Therefore, we

get

M2 +M3 +M4 = −1

6
(a− 1)

i

16π2ε

∫
dx
[
Y ab
µ Y bσ

ν bρa + Y ab
µ Y ρa

ν bbσ + Y bσ
µ Y ρa

ν bab
]
×

×[gµνgσρ + δµρ δ
ν
σ + δµσδ

ν
ρ ] + f. p., (B.18)

M2 +M3 +M4 = −1

6
(a− 1)

i

16π2ε

∫
dx
{

6Y ab
ρ Xb(bρa + baρ)− 24babXaXb

}
+ f. p.

The integral N , taking into account Eq. (39), can be written as

N = N1 +N2 +N3 + f. p.,

where

N1 = −4
∫
dydtdv gσρc

ρλ(y)Y µa
ν (t)Y aσ

ε (v)N νε
1λµ,

N2 = −4
∫
dydtdv gλµc

ρλ(y)Y µa
ν (t)Y aσ

ε (v)N νε
2σρ,

N3 = 4
∫
dydtdv cρλ(y)Y µa

ν (t)Y aσ
ε (v)N νε

3σρλµ, (B.19)

with

N νλµε
1 = ∆(v − y)∂νt ∆λµ(y − t)∂εv∆(t− v),

Nσρνε
2 = ∆σρ(v − y)∂νt ∆(y − t)∂εv∆(t− v),

Nσρνλµε
3 = ∆σρ(v − y)∂νt ∆λµ(y − t)∂εv∆(t− v). (B.20)

The integrals N νελµ
1 , Nσρνε

2 have the same divergent part as Mµνσρ
2 . Thus,

N νελµ
1 = − 1

24
(a− 1)

i

16π2ε
[gµνgλε + gνλgµε + gµλgνε]δ(y − v)δ(t− y) + f. p.,

Nσρνε
2 = − 1

24
(a− 1)

i

16π2ε
[gσρgνε + gνσgρε + gσεgρν ]δ(y − v)δ(t− y) + f. p. (B.21)

Substituting cρλY µa
ν Y aσ

ε = (ρ+XaXa)XbXbgρλδµν δ
σ
ε , we obtain

N1 +N2 = 8(a− 1)
i

16π2ε

∫
dx(ρ+XaXa)XbXb + f. p.
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The integral Nσρνλµε
3 is of the form

Nσρνλµε
3 = (a− 1)2)

ddp

(2π)d
ddq

(2π)d
eip(y−v)+iq(t−y)Gσρνλµε

3 ,

where

Gσρνλµε
3 = 4!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ z

0
du
∫ ddk

(2π)d
kσkρkλkµkνkε

[k2 + . . .]5
+ f. p.

Using the value of the integral in appendix A and then noting that

gρλgµνgσε[g
µνgσρgλε + perm.] = 192

we get N3, which reads

N3 = 4(a− 1)2 i

16π2ε

∫
dx(ρ+XaXa)XbXb + f. p.

Thus, the divergent part of Tr(D−1
0 δD−1

0 δD−1
0 δ) is

divTr(D−1
0 δD−1

0 δD−1
0 δ) = divTr(D−1

0 δD−1
0 δD−1

0 δ)a=1

+6(a− 1)
i

16π2ε

∫
dxY ab

µ Xa∂µXb

−1

2
(a− 1)

i

16π2ε

∫
dx
{

6Y ab
ρ Xb(bρa + baρ)− 24babXaXb

}
+
{

24(a− 1) + 12(a− 1)2
} i

16π2ε

∫
dx(ρ+XaXa)XbXb. (B.22)

B.3 Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)

Finally, we calculate the divergent part of Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ). We have:

Sp(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) = (D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

de(D−1
0 )ef (δ)

fg(D−1
0 )gk(δ)

ka

+4(D−1
0 )ab(δ)

bc(D−1
0 )cd(δ)

de(D−1
0 )ef (δ)

fσ(D−1
0 )σρ(δ)

ρa

+2(D−1
0 )ab(δ)

bσ(D−1
0 )σρ(δ)

ρe(D−1
0 )ef (δ)

fλ(D−1
0 )λµ(δ)µa + f. p., (B.23)

where we omitted terms, that produce finite integrals. Then

Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)− Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)a=1 = 4P + 2Q+ f. p.

= 4
∫
dxdydzdtdudvdrds {∆(x− y)∆(z − t)∆(u− v)∆σρ(r − s)×

×〈y|(δ)ab|z〉〈t|(δ)bc|u〉〈v|(δ)cσ|r〉〈s|(δ)ρa|x〉}

+2
∫
dxdydzdtdudvdrds {−∆(x− y)∆(z − t)∆(u− v)∆λµ(r − s)gσρ

−∆(x− y)∆σρ(z − t)∆(u− v)∆(r − s)gλµ + ∆(x− y)∆σρ(z − t)∆(u− v)∆λµ(r − s)} ×

×〈y|(δ)aσ|z〉〈t|(δ)ρb|u〉〈v|(δ)bλ|r〉〈s|(δ)µa|x〉+ f. p. (B.24)
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The integral P is of the form

P = 16
∫
dydtdvds Y ab

µ (y)Y bc
ν (t)Y cσ

λ (v)Y ρa
ε (s)P µνλε

σρ + f. p.,

where

P µνλεσρ = ∂µy∆(s− y)∂νt ∆(y − t)∂λv∆(t− v)∂εs∆
σρ(v − s).

The integral P µνλεσρ can be written as

P µνλεσρ = −(a− 1)
∫ ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
ddk4

(2π)d
kµ1k

ν
2k

λ
3k

ε
4k

σ
4k

ρ
4

k2
1k

2
2k

2
3k

4
4

e−ik1(s−y)−ik2(y−t)−ik3(t−v)−ik4(v−s).

Introducing the new integration variables

(k1, k2, k3, k4) 7→ (p, k, q, r) : p = k1 − k2, q = k3 − k2, r = k4 − k3, k = k2,

with Jacobian J = 1, we get

P µνλεσρ = −(a− 1)
∫ ddp

(2π)d
ddq

(2π)d
ddr

(2π)d
eip(y−s)+iq(s−t)+ir(s−v)Hµνλεσρ

where

Hµνλεσρ = 4!
∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ z

0
du
∫ ddk

(2π)d
kσkρkλkµkνkε

[k2 + . . .]5
+ f. p.

The latter integral has the same divergent part as Gσρνλµε
3 . Thus,

Hµνλεσρ =
1

8Γ(5)

i

16π2ε

1

24
[gµνgσρgλε + perm.]δ(y − s)δ(s− t)δ(s− v) + f. p.

Substituting Y cσ
λ Y ρa

ε = −XaXcδσλδ
ρ
ε and noting that

gσλgρε[g
µνgσρgλε + perm.] = 48gµν ,

we obtain

P = 4(a− 1)
i

16π2ε

∫
dxgµνY ab

µ Y bc
ν X

aXc + f. p.

We write the second integral Q as

Q = Q1 +Q2 +Q3 + f. p.,

where

Q1 = −16
∫
dydtdvds gαβY

aα
σ (y)Y βb

ρ (t)Y bλ
ν (v)Y µa

ε (s)Qσρνε
1λµ + f. p.,
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Q2 = −16
∫
dydtdvds gαβY

aλ
σ (y)Y µb

ρ (t)Y bα
ν (v)Y βa

ε (s)Qσρνε
2λµ + f. p.,

Q3 = 16
∫
dydtdvds Y aσ

α (y)Y ρb
β (t)Y bλ

ν (v)Y µa
ε (s)Qαβνε

3σρλµ + f. p., (B.25)

with

Qσρνελµ
1 = ∂σy∆(s− y)∂ρt ∆(y − t)∂νv∆(t− v)∂εs∆

λµ(v − s),

Qσρλµνε
2 = ∂σy∆(s− y)∂ρt ∆λµ(y − t)∂νv∆(t− v)∂εs∆(v − s),

Qαβσρνελµ
3 = ∂αy ∆(s− y)∂βt ∆σρ(y − t)∂νv∆(t− v)∂εs∆

λµ(v − s). (B.26)

The integrals Qσρνελµ
1 , Qσρλµνε

2 have the same divergent part as Hµνλεσρ. Since

gσρgλνgµε[g
µνgσρgλε + perm.] = 192, gνεgλσgµρ[g

µνgσρgλε + perm.] = 192,

we obtain

Q1 +Q2 = 32(a− 1)
i

16π2ε

∫
dxXaXaXbXb + f. p.

The third integral Qαβσρνελµ
3 is

Qαβσρνελµ
3 = (a− 1)2

∫ ddp

(2π)d
ddq

(2π)d
ddr

(2π)d
eip(y−s)+iq(s−t)+ir(s−v)Hαβσρνελµ

3 ,

where

Hαβσρνελµ
3 = 5!

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz
∫ z

0
du
∫ u

0
dv
∫ ddk

(2π)d
kαkβkσkρkνkεkλkµ

[k2 + . . .]6
+ f. p.

Performing necessary integrations, we get

Qαβσρνελµ
3 = (a− 1)2 1

16

i

16π2ε

1

120
[gαβgµνgσρgλε + perm.]δ(y − s)δ(s− t)δ(s− v) + f. p.

Then we substitute Y aσ
α Y ρb

β Y bλ
ν Y µa

ε = XaXaXbXbδσαδ
ρ
βδ

λ
ν δ

µ
ε . Since

gσαgρβgλνgµε[g
αβgµνgσρgλε + perm.] = 1920,

we obtain

Q3 = 16(a− 1)2 i

16π2ε

∫
dxXaXaXbXb + f. p.

Hereby, the divergent part of Tr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) reads

divTr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ) = divTr(D−1
0 δD−1

0 δD−1
0 δD−1

0 δ)a=1
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+16(a− 1)
i

16π2ε

∫
dxgµνY ab

µ Y bc
ν X

aXc

+
{

64(a− 1) + 32(a− 1)2
} i

16π2ε

∫
dxXaXaXbXb (B.27)

B.4 Summation over flavour indices

Thus, the divergent part of the one-loop functional in the arbitrary gauge is given by the

expression

divZone loop = divZa=1
one loop +

1

2
(1− a)

1

16π2ε

∫
dx
{
−2bρa∂ρX

a +
1

4
gσρb

σabρa

+2Y ab
µ Xa∂µXb − Y ab

ρ Xb(bρa + baρ) + 4babXaXb − 4gµνY ab
µ Y bc

ν X
aXc

}
(B.28)

+
{

2(a− 1) + (a− 1)2
} 1

16π2ε

∫
dx
{

1

4
(ρ+XaXa)2 − 2(ρ+XaXa)XbXb + 4XaXaXbXb

}

For simplification of the result, we have to sum over flavor indices. This is done with help of

the formula, which follows from the completeness relation for the generators λa of SU(N):

∑
a

〈Aλa〉〈Bλa〉 = 2〈AB〉 − 2

N
〈A〉〈B〉. (B.29)

We further set QR = QL = Q. Since HL = 〈QR −QL〉 = 〈Q−Q〉 = 0,

XaXa =
F 2

0

16
〈HLλ

a〉〈HLλ
a〉 =

F 2
0

8
〈H2

L〉.

Then, ρ+XaXa = 1
2
F 2

0 〈H2
L〉 and the second integral in Eq. (B.28) is equal to zero:

1

4
(ρ+XaXa)2 − 2(ρ+XaXa)XbXb + 4XaXaXbXb =

(
1

16
− 1

8
+

1

16

)
F 2

0 〈H2
L〉 = 0.

From the definition of the matrix b it follows that

bρa = Xρc
µ Γµca + Λρa − ∂µXρa

µ , bρa + baρ = 2(Xρc
µ Γµca + Λρa),

bab = Γacµ Γµcb + 4XaXb + Λab − ∂µΓabµ . (B.30)

Then,

4babXaXb − 4gµνY ab
µ Y bc

ν X
aXc = 4XaXb

{
1

2
〈[∆µ, λ

a][∆µ, λb]〉+
1

4
〈{λa, λb}σ〉

− C

8F 2
0

(〈[HR +HL, λ
a][HR −HL, λ

b] + a↔ b〉)
}

(B.31)
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The matrix element bρa can be written as

bρa = −1

2
F0〈([HR,∆

ρ] +DρHL)λa〉,

since Xρb
µ Γµba = −1

4
F0〈λa[Γρ, HL]〉. Using Eq. (B.29), we obtain:

bρa∂ρX
a =

1

4
F 2

0 〈∂µHL([HR,∆
µ] +DµHL)〉,

gσρb
σabρa =

1

2
F 2

0 〈([HR,∆µ] +DµHL)([HR,∆
µ] +DµHL)〉,

Γabµ X
a∂µXb = −1

8
F 2

0 〈∂µHL[Γµ, HL]〉,

Γabρ X
bXcΓρca = −1

8
F 2

0 〈[Γµ, HL][Γµ, HL]〉,

Γabρ X
bΛρa =

1

4
F 2

0 〈[Γµ, HL]
(

[HR,∆
µ] +

1

2
DµHL

)
〉,

XaXb〈[∆µ, λ
a][∆µ, λb]〉 =

1

4
F 2

0 〈[HL,∆µ][HL,∆
µ]〉,

XaXb〈{λa, λb}σ〉 =
1

2
F 2

0 〈H2
Lσ〉,

XaXb(〈[HR +HL, λ
a][HR −HL, λ

b] + a↔ b〉) =
1

8
F 2

0 〈[HR +HL, HR −HL]2〉 (B.32)

We also note that DµHL can be written as

DµHL = [HR,∆µ] +Gµ,

where

Gµ = u+cµRQu− uc
µ
LQu

+.

After substitution of these formulas into Eq. (B.28), the divergent part of the one-loop func-

tional takes the form

divZone loop = divZa=1
one loop +

1

4
F 2

0 (1− a)
1

16π2ε

∫
dx
{
〈[HL,∆µ]2〉 − 〈[HR,∆µ]2〉

+〈H2
Lσ〉 − 2〈[HR,∆µ]Gµ〉 − 3

4
〈GµG

µ〉 − 1

8
F 2

0Z〈[HR +HL, HR −HL]2〉
}
, (B.33)

where Z = C/F 4
0 .
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