Virtual Institute of Physics

Office address: High Energy Physics Institute of Tbilisi State University 9 Univesity street, GE-0186, Tbilisi, Georgia, Tel.: (+99532) 18-73-17, Fax: (+99532) 18-98-52

Lectures on: Monte-Carlo Methods in Quantum Mechanics and

Quantum Field Theory

by: Akaki Rusetsky (University of Bonn, Germany)

will be held in the: Lecture hall of "Kvali" association

2nd block of Tbilisi State University, 3 Chavchavadze Ave.

time: Tuesdays 12:00 (lectures) Thursdays 12:00 (exercises)

Master students are invited to attend Course language: English/Georgian at the discretion of the audience

Topics:

- Path integrals in QM and QFT
- Introduction to Monte-Carlo algorithms
- Quantum scattering on the lattice
- · Discretization of the Klein-Gordon equation
- Lattice fermions
- Spin systems

Monte-Carlo methods in Quantum Mechanics and Quantum Field Theory

- 1. Path integral formulation of quantum mechanics
 - Evolution operator in path integral formulation
 - Wick rotation
 - Green functions, spectrum of the Hamiltonian, wave function
 - Transfer operator
 - Relation to the statistical physics
 - Discretization error and improved actions
- 2. Monte-Carlo methods
 - Importance sampling
 - Numerical algorithms
 - Evaluation of the errors
- 3. Examples
 - Harmonic oscillator
 - Anharmonic oscillator
 - Double-well potential and instantons
 - Generalized eigenvalue equations
- 4. Quantum mechanics in a finite volume
 - Determination of the spectrum in the momentum space
 - Angular momentum on the cubic lattice
 - Scattering length
 - Scattering phase
 - Resonances
- 5. Free scalar field*
 - Discretization of the Klein-Gordon Lagrangian

- Propagator of the free scalar field on the lattice
- 6. Dirac equation on the lattice*
 - Spectrum of the Dirac operator on the lattice: the doublers
 - Wilson fermions
 - Kogut-Susskind fermions
 - Chiral symmetry on the lattice
 - Axial anomaly on the lattice
- 7. Ising model*
 - Mean field approximation
 - Phase transition
 - Numerical simulations

References

- [1] R. P. Feynman and A. R. Hibbs, "Quantum Mechanics and Path Integrals," McGraw-Hill, Inc. (1965).
- [2] J. Smit, "Introduction to quantum fields on a lattice: A robust mate," Cambridge Lect. Notes Phys. **15** (2002) 1.
- [3] I. Montvay and G. Münster, "Quantum fields on a lattice," Cambridge, UK: Univ. Pr. (1994) 491 p. (Cambridge monographs on mathematical physics)
- [4] G. P. Lepage, "Lattice QCD for Novices," arXiv:hep-lat/0506036.
- [5] M. Creutz and B. Freedman, "A Statistical Approach To Quantum Mechanics," Annals Phys. **132** (1981) 427.
- [6] M. Lüscher, "Two particle states on a torus and their relation to the scattering matrix," Nucl. Phys. B **354** (1991) 531;
- [7] M. Lüscher, "Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States," Commun. Math. Phys. **105** (1986) 153.

[8] A. K. Das, "Field theory: A Path integral approach," World Sci. Lect. Notes Phys. **52** (1993) 1.